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A central idea in marketing and diffusion research is that influentials—a minority
of individuals who influence an exceptional number of their peers—are important
to the formation of public opinion. Here we examine this idea, which we call the
“influentials hypothesis,” using a series of computer simulations of interpersonal
influence processes. Under most conditions that we consider, we find that large
cascades of influence are driven not by influentials but by a critical mass of easily
influenced individuals. Although our results do not exclude the possibility that in-
fluentials can be important, they suggest that the influentials hypothesis requires
more careful specification and testing than it has received.

I n the 1940s and 1950s, Paul Lazarsfeld, Elihu Katz, and
colleagues (Katz and Lazarsfeld 1955; Lazarsfeld, Ber-
elson, and Gaudet 1968) formulated a breakthrough theory
of public opinion formation that sought to reconcile therole
of media influence with the growing realization that, in a
variety of decision-making scenarios, ranging from political
to personal, individuals may be influenced more by exposure
to each other than to the media. According to their theory,
illustrated schematically in figure 1, a small minority of
“opinion leaders’ (stars) act as intermediaries between the
mass media and the majority of society (circles). Because
information, and thereby influence “flows’ from the media
through opinion leaders to their respective followers, Katz
and Lazarsfeld (1955) called their model the “two-step flow”
of communication, in contrast with the then paradigmatic
one-step, or “hypodermic,” model that treated individuals
as atomized objects of media influence (Bineham 1988).
In the decades after the introduction of the two-step flow,
the idea of opinion leaders, or “influentials’ asthey are also
caled (Merton 1968), came to occupy a central placein the
literatures of the diffusion of innovations (Coleman, Katz,
and Menzel 1966; Rogers 1995; Valente 1995), communi-
cations research (Weimann 1994), and marketing (Chan and
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FIGURE 1

SCHEMATIC OF THE TWO-STEP FLOW MODEL
OF INFLUENCE

Misra 1990; Coulter, Feick, and Price 2002; Myers and Rob-
ertson 1972; Van den Bulte and Joshi 2007; Vernette 2004).
By the late 1960s, the theory had been hailed as one of
most important formulations in the behavioral sciences
(Arndt 1967), and by the late 1970s, according to Gitlin
(1978), the two-step flow had become the “dominant par-
adigm” of media sociology. According to Weimann (1994),
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over 3,900 studies of influentials, opinion leaders, and per-
sonal influence were conducted in the decades after Katz
and Lazarseld’'s semina Decatur study, leading Burt (1999,
38) to comment that the two-step flow had become “a guid-
ing theme for diffusion and marketing research.” More re-
cently still, Roch (2005, 110) has concluded that “in business
and marketing, the idea that a small group of influential
opinion leaders may accelerate or block the adoption of a
product is central to a large number of studies.”

But what exactly does the two-step flow say about in-
fluentials, and how precisely do they exert influence over
the (presumably much larger) population of noninfluentials?
In the remainder of this article we argue that, although the
dual concepts of personal influence and opinion leadership
have been extensively documented, it is neverthel essunclear
exactly how, or even if, the influentials of the two-step flow
areresponsiblefor diffusion processes, technology adoption,
or other processes of social change. By simulating a series
of formal models of diffusion that are grounded in the math-
ematical socia science literature, we find that there are in-
deed conditions under which influentials are likely to be
disproportionately responsible for triggering large-scale
“cascades’ of influence and that, under these conditions, the
usual intuition regarding the importance of influentials is
supported. These conditions, however, appear to be the ex-
ception rather than the rule—under most conditions that we
consider, influentials are only modestly more important than
average individuals. In the models that we have studied, in
fact, it isgenerally the case that most social changeisdriven
not by influentials but by easily influenced individuals in-
fluencing other easily influenced individuals. Based on these
results, we argue that, although our models are at best a
simplified and partial representation of a complex reality,
they nevertheless highlight that claims regarding the im-
portance of influentials should rest on carefully specified
assumptions about who influences whom and how.

THE INFLUENTIALS HYPOTHES S

Katz and Lazarsfeld (1955, 3) originally defined opinion
leadersas “the individuals who were likely to influence other
persons in their immediate environment,” and this definition
remains in use, more or less unchanged (Grewal, Mehta, and
Kardes 2000, 236). It isimportant to note that opinion leaders
are not “leaders’ in the usual sense—they do not head formal
organizations nor are they public figures such as newspaper
columnists, critics, or media personalities, whose influenceis
exerted indirectly via organized media or authority structures.
Rather their influenceisdirect and derivesfrom their informal
status as individuals who are highly informed, respected, or
simply “connected.” As Keller and Berry (2003, 1) specify:
“It's not about the first names that come to mind when you
think about the people with influence in this country—the
leaders of government, the CEQO’s of larger corporations, or
the weslthy. Rather, it's about millions of people . . . who
shape the opinions and trendsin our country.” Oprah Winfrey,
in other words, may or may not influence public opinion in
various ways, but that is a question primarily of media, not

JOURNAL OF CONSUMER RESEARCH

interpersonal, influence, and therefore is the subject of a dif-
ferent discussion.

Although the notion of opinion leadership seems clear,
precisely how the influence of opinion leaders over their
“immediate environment” shapes opinions and trends across
entire communities, or even a country, is not specified by
the two-step flow model itself. Often it is described simply
as “a process of the moving of information from the media
to opinion leaders, and influence moving from opinion lead-
ersto their followers’ (Burt 1999, 38), where the mechanics
of the process itself are either left unspecified or, alterna
tively, are asserted to derive from some diffusion process.
Kelly et a. (1991, 168), for example, claim that “diffusion
of innovation theory posits that trends and innovations are
often initiated by arelatively small segment of opinion lead-
ersinthe population,” and similar statements appear in fields
as diverse as marketing (Chan and Misra 1990; Coulter et
al. 2002; Van den Bulte and Joshi 2007), public health
(Doumit et a. 2007; Kelly et al. 1991; Moore et a. 2004,
189; Soumerai et al. 1998, 1358), and politica behavior
(Nisbet 2006; Roch 2005), as well as being featured in
popular books (Barabasi 2002; Gladwell 2000) and com-
mercial marketing publications (Burson-Marsteller 2001;
Keller and Berry 2003; Rand 2004).

On closer inspection, however, the diffusion of innova
tions literature does not specify any such theory. Rogers
(1995, 281) does indeed state the following: “The behavior
of opinion leaders is important in determining the rate of
adoption of an innovation in a system. In fact, the S-shape
of the diffusion curve occurs because once opinion leaders
adopt and tell others about the innovation, the number of
adopters per unit time takes off.” But Rogers's claim does
not necessarily follow from the dynamics of diffusion pro-
cesses—S-shaped diffusion curves do not, in fact, require
opinion leaders at all. The “Bass model” (Bass 1969), for
example, which is also popular in the marketing literature
(Lehmann and Esteban-Bravo 2006), invariably generates
S-shaped diffusion curves; yet it does so within an entirely
homogenous population. Nor do other kinds of diffusion
models (Bailey 1975; Dodds and Watts 2005; Dodson and
Muller 1978; Granovetter 1978; Shrager, Hogg and Hub-
erman 1987; Young 2006) require opinion leaders or any
kind of special individuals in order to generate S-shaped
diffusion curves, which are characteristic of virtualy any
self-limiting, contagious process.

The absence of specia individuals in forma models of
diffusion, of course, does not necessarily mean that they do
not arise in areal diffusion process or that they do not play
an important role. It does suggest, however, that the matter
has not been resolved either by the two-step flow itself or
by diffusion of innovationstheory. To what extent, therefore,
does the observation that some people are more influential
than others in their immediate environment translate to the
much stronger and more interesting claim that some special
group of influentials plays a critical, or at least important,
role in forming and directing public opinion? To address
this question, we will study, using computer simulations, a
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series of mathematical models of interpersonal influencethat
invoke a variety of assumptions about both the nature of
interpersonal influence and influence networks. We empha-
size that the models we consider, while plausible and some-
what general, are neither realistic nor exhaustive in their
consideration of possible alternatives. However, we have
consciously relaxed some of our more restrictive assump-
tions; thus, to the extent that different assumptions consis-
tently generate similar conclusions, these conclusions might
be expected to have reasonably broad applicability.

A SSIMPLE MODEL OF INTERPERSONAL
INFLUENCE

We start by assuming that each individual i must make a
decision with regard to someissue X. Following an extensive
literature that encompasses sociology (Granovetter 1978),
economics (Blume and Durlauf 2003; Brock and Durlauf
2001; Durlauf 2001; Schelling 1973; Young 1996), social
psychology (Latané and L'Herrou 1996), political science
(Kuran 1991), marketing (Goldenberg, Libai, and Muller
2001; Mayzlin 2002), and mathematical physics (Borghesi
and Bouchaud forthcoming; Watts 2002), we focus on bi-
nary decisions that exhibit “ positive externalities,” meaning
that the probability that individual i will choose alternative
B over A will increase with the relative number of others
choosing B. Positive externalities arise in a wide variety of
areas of interest to marketing and diffusion researchers, in-
cluding “network effects’ (Liebowitz and Margolis 1998),
coordination games (Latané and L’ Herrou 1996; Oliver and
Marwell 1985), socia proof (Cialdini 2001); “learning from
others’ (Bikhchandani, Hirshleifer, and Welch 1992; Sal-
ganik, Dodds, and Watts 2006), and conformity pressures
(Bernheim 1994; Bond and Smith 1996; Cialdini and Gold-
stein 2004). Furthermore, as Schelling (1978), Granovetter
(1978), and others (Banerjee 1992; Bikhchandani et al.
1992; Watts 2003) have argued, binary decisions can be
applied to asurprisingly wide range of real world situations.
Thus, while the class of binary decisions with positive ex-
ternalities is not completely genera—for example, it ex-
cludes cases in which individuals must choose simulta-
neously between many alternatives (De Vany and Walls
1996; Hedstrom 1998) and also excludes “ anticoordination”
(Arthur 1994) or “snob” (Leibenstein 1950) behavior, for
which negative externalities apply—it is an important and
reasonably general case to consider.

Threshold Rule

Within this class, a widely studied decision rule, and the
one that we will consider initially (we will consider an al-
ternative later), is called a “threshold rule.” This rule posits
that individuals will switch from A to B only when suffi-
ciently many others have adopted B in order for the per-
ceived benefit of adopting a new innovation to outweigh the
perceived cost (Lopez-Pintado and Watts 2007; Morris
2000; Schelling 1973). More formally, when b, the fraction
of i’s sample population that has adopted B islessthani’s
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threshold ¢,, the probability that i will adopt B is zero, and
when it exceeds ¢;, it jumps to one; that is,

_[1ifb2>a,
Prladopt B] = 0if b<g,
where individual differences with respect to subject matter
expertise, strength of opinion, personality traits, media ex-
posure, or perceived adoption costs may correspond to het-
erogeneous thresholds b, (Valente 1995).

Influence Networks

In addition to describing a rule for how individuals influ-
ence each others decisions, we aso need to specify who
influences whom—that is, we require a formal description of
the associated influence network. Unfortunately, empirical
evidence regarding real world influence networks is limited.
Although a number of sociometric studies of influence have
been conducted, beginning with Coleman et a.’ s (1957) study
of the diffusion of tetracycline, the resulting analyses have
tended to focus on individual-level (Burt 1987) rather than
network properties. More recently, a considerable amount of
empirical work has been dedicated to measuring the properties
of large-scale networks (Newman 2003; Watts 2004); how-
ever, only a handful of studies (Godes and Mayzlin 2004;
Leskovec, Adamic, and Huberman 2007) have attempted to
study word-of-mouth influence empirically. These ap-
proaches, moreover, while promising, are not yet capable of
measuring network structure in any detail. Finaly, a small
number of human subjects experiments (Kearns, Suri, and
Montfort 2006; Latané and L'Herrou 1996) have shed light
on the relationship between network structure and group
coordination processes. However, the networks involved
were artificially generated by the experimenters; thus, they
do not shed light on the structure of real world influence
networks.

In the absence of clear empirical evidence regarding the
structure of influence networks, we assume that each indi-
vidua i in apopulation of sizeN influencesn; others, chosen
randomly, where n, is drawn from an influence distribution
p(n), whose average n,,, is assumed to be much less than
the size of the total population—that is, n,,, < N. We em-
phasize that, although n, is mathematically equivalent to the
notion of “acquaintance volume” k;, familiar to network
analysts (Wasserman and Faust 1994), n, refers not to how
many others node i knows but to how many othersi influ-
ences with respect to the particular issue, X, at hand. Thus
n; should be thought of as some (possibly complicated) func-
tion not only of i's acquaintance volume but also of i's
personal characteristics, subject matter expertise, authority
with respect to issue X, and even the characteristics of the
other individuals in i's community (Katz and Lazarsfeld
1955; Rogers 1995).

The resulting influence network, illustrated schemati-
cally in figure 2, differs from the two-step flow schematic
of figure 1 in two important ways. First, whereasin figure
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1 influence can only flow from opinion leaders to fol-
lowers, in figure 2, it can flow in either direction. Second,
in figure 2 influence can propagate for many steps,
whereas in figure 1 it can propagate only two. We note,
however, that, in both cases, figure 2 is consistent with
available empirical evidence—arguably more so than fig-
ure 1. Numerous studies, including that of Katz and La-
zarsfeld (1955), suggest that opinion leaders and follow-
ers alike are exposed to mixtures of interpersonal and
media influence (Troldahl and Dam 1965) and that dif-
ferences in influence are more appropriately described on
a continuum than dichotomously (Lin 1973). Further-
more, while the implications of multistep flow for the
influentials hypothesis have not been studied, multistep
flow itself has been recognized as alikely feature of most
diffusion processes (Menzel and Katz 1955; Robinson
1976). Brown and Reingen (1987), for example, found
that, even in a relatively small population, 90% of rec-
ommendation chains extended over more than one step
and 38% involved at least four individuals.

Although our model therefore embodies some important
qualitative features of real world interpersonal influence net-
works, it neverthel ess contains two assumptions regarding the
structure of these networks that merit critical examination in
light of our objectives. First, the influence distribution p (n),
which is necessarily Poisson (Solomonoff and Rapoport
1951), exhihits relatively little variation around its average.
Influentials in such a world, while clearly more influential
than average, are rarely many times more influential. Second,
aside from the distribution of influence, the network exhibits
no other structure—it is entirely random. Although neither
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of these assumptions is demonstrably incorrect, neither is
clearly correct either—the empirical evidenceisunfortunately
inconclusive. Thus we will also present in alater section two
variations of the basic model that relax both the homogeneity
and the randomness assumptions.

Another advantage of formally defining an influence net-
work, even with such a simple model, is that we can now
define more precisely what we mean by an “influential.”
Previous empirical work has addressed the question of who
should be considered influential, but a clear answer re-
mains elusive (Weimann 1991). Classical studieslikethose
of Coleman et a. (1957) and Merton (1968) suggested that
individuals who directly influence more than three or four
of their peers should be considered influentials, while re-
cent market research studies have concluded that the num-
ber may be as high as 14 (Burson-Marsteller 2001). Other
studies, by contrast, define influentials in purely relative
terms. Keller and Berry (2003), for example, define in-
fluentials as scoring in the top 10% of an opinion lead-
ership test, while Coulter et a. (2002), using asimilar test,
treat the top 32% as influentials.

Here we follow the latter approach and define an influ-
ential as an individua in the top q% of the influence dis-
tribution p (n). From atheoretical perspective, any particular
value of q that we specify is necessarily arbitrary—indeed,
we have already argued that dichotomies such as that be-
tween opinion leaders and followers are neither theoretically
derived nor empirically supported. Our purpose here, how-
ever, is not to defend any particular definition of influentials
but to examine the claim that influentials—defined in some
reasonable, self-consistent manner—determine the outcome
of diffusion processes. From this perspective, therefore, our
definition has the advantage (over definitions that rely on
absolute numbers) that it can be applied consistently to in-
fluence networks of different average densitiesn,,, and also
different distributionsp (n). In all results presented here, we
chooseq = 10%—anumber that is consistent with previous
studies (Keller and Berry 2003)—but we have also studied
a wide range of values of q and have determined that our
conclusions do not depend sensitively on the specific choice.

Dynamics of Influence

Our model proceeds from an initial state in which al N
individuals are inactive (state 0), with the exception of a
single, randomly chosen initiator i, who is activated (state
1) exogenously. Depending on the model parameters and
also on the particular (randomly chosen) properties of i's
neighbors, thisinitial activation may or may not trigger some
additional endogenous activations. Subsequently, these
newly activated neighbors may activate some of their own
neighbors, who may, in turn, trigger more activations still,
and so on, generating a sequence of activations, caled a
“cascade” (Watts 2002). When all activations associated
with a single cascade have occurred, its size can be deter-
mined simply as the total cumulative number of activations.
By repeating this process many times, where each time the
population, the corresponding influence network, and the
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FIGURE 3

RELATIVE IMPACT OF INFLUENTIALS AS INITIATORS FOR RANDOM INFLUENCE NETWORKS
AND THE THRESHOLD MODEL OF INFLUENCE
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NoTe.—A, expected cascade size triggered by an influential (squares) and average (circles) individual, respectively, as a function of the density of the influence
network; B, the vertical shaded strip indicates the region in which the absolute multiplier effect (squares) for influentials, divided by relative direct influence of

influentials (solid line), yields a relative multiplier effect above unity (dashed line).

initial condition are al regenerated anew, it is possible to
associate a distribution of cascade sizes with every choice
of parameter settings. The implications for social contagion
of different parameter values, and even different models,
can then be assessed, either quantitatively or qualitatively,
in terms of the properties of the corresponding cascade
distributions.

Cascades of any size can and do occur in this model, but
an important distinction in what follows is between “local”
and “global” cascades. Loca cascades affect only a rela
tively small number of individuals and typically terminate
within one or two steps of the initiator. The size of local
cascades is therefore determined mostly by the size of an
initiator’s immediate circle of influence, not by the size of
the network as a whole. Global cascades are the oppo-
site—they affect many individuals, propagate for many
steps, and are ultimately constrained only by the size of the
popul ation through which they pass. Importantly, global cas-
cades can only occur when the influence network exhibits
a“critical mass’ of early adopters, which we define here as
individuals who adopt after they are exposed to a single
adopting neighbor. A critical mass can then be said to exist
when sufficiently many early adopters are connected to each
other that their subnetwork “percolates’ throughout the en-
tire influence network (Watts 2002). Although the critical
mass may only occupy a small fraction of the total popu-
lation, an interesting and subtle consegquence of cascade dy-
namics is that, once it is activated, the remainder of the
population subsequently activates as well (Watts 2002),
leading to a global cascade. But if the critical mass does
not activate, or if it does not exist, then only local cascades
are possible. In terms of the diffusion of innovations, the
critical massis therefore what enables a new idea or product
to “cross the chasm” from innovation to success (Moore
1999).

IMPLICATIONS FOR THE INFLUENTIALS
HYPOTHESIS

The most obvious way in which an individual can affect
the size and likelihood of a cascade is by initiating one.
Thus, one way to quantify the relative importance of in-
fluentialsisto compare the average size of acascadeinitiated
by an influential to that started by an average member of
the population. Figure 3 makes this comparison explicit,
both in absolute (3A) and relative (3B) terms. Here we have
chosen a value of the average activation threshold ¢ =
0.18 for which cascades are possible over some range of
the average density n,,, of the influence network, but we
have a so studied many different choicesof ¢, corresponding
to innovations that are, on average, more or less appealing
(or, aternatively, populations that are more or less inno-
vative). Although the particular choice of ¢ does affect the
probability that a global cascade can take place, it affects
influentials and noninfluentials in asimilar manner; thus our
conclusions regarding the relative effect of influentials are
largely independent of ¢. There are three points to empha
size from this figure, and we discuss each in turn.

First, the size of cascades that can be triggered by single
initiators varies enormoudly depending on the average den-
sity n,, of the influence network. When n,, is too low,
many individuals are highly susceptible to activation, but
the network is too poorly connected for influence to prop-
agate far, and thus only a tiny fraction of the network is
activated. When n,,, is too high, the opposite applies: the
network is highly connected, but individuals now require
multiple active neighbors to be activated themselves; thus
small initial seeds are unable to grow. Only in the inter-
mediate regime, called the “ cascade window” (Watts 2002),
can global cascades take place, and in that region both in-
fluentials and average individuals are likely to trigger them.
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To afirst approximation, therefore, the ability of any in-
dividual to trigger a cascade depends much more on the
global structure of the influence network than on his or her
personal degree of influence—that is, if the network permits
global cascades, virtually anyone can start one, and if it does
not permit global cascades, nobody can. Once again, this
statement does not depend on the particular choice of ¢
shown in figure 3, which is purely illustrative. If, for ex-
ample, we chose some other value of ¢ that also lies within
the region in which global cascades occur, the particular
curvesin figure 3A would shift, but the relationship between
them, as shown in figure 3B, would remain qualitatively the
same. Furthermore, if we were to choose a value of ¢ such
that global cascades were not possible for any other model
parameters—corresponding, say, to a highly resilient pop-
ulation or to an unappealing innovation—then the question
of who triggers large cascades would obviously be moot:
neither influentials nor noninfluentials would be able to do
S0.

The second point to note, as illustrated in figure 3A, is
that when large, multistep cascades do occur, influentials
(squares) do tend, on average, to trigger larger cascades (as
well as more frequent large cascades) than average individ-
uals (circles). Equivalently, in figure 3B, the relative size of
triggered cascades—what Van den Bulte and Joshi (2007)
cal the “multiplier effect” of influentials (squares)—is al-
ways at least one. Thus, although it is clearly not the case
that influentials are essential to a global cascade, it is also
clear that they have more impact than average individuals.
We note, however, that the relative impact of influentialsis
in most cases modest. For example, when n,,, = 3, anin-
fluential directly influences more than twice as many people
(n;« = 6) as an average individual, but the multiplier effect
(squares) barely exceeds one. Near the lower and upper
boundaries of the cascade window, the multiplier effect does
clearly exceed one, indicating that influentials are more ef-
fective in triggering cascades than ordinary individuals.
With the exception of a narrow interval (shaded vertical
strip) near the upper boundary, however, the relative mul-
tiplier effect (dashed line)—the ratio of the absolute mul-
tiplier for influentials to their relative direct influence
Nint/N4y (SOlid line)—is less than one, meaning that the size
of the cascades triggered by influentials, although larger than
average, is less than proportional to the number of individ-
uals they influence directly.

Taken together, our results provide mixed support for what
we have caled the influentials hypothesis. The strongest
version of the hypothesis—that influentials are in some way
essential to diffusion—is clearly not supported, as influen-
tials are neither necessary nor sufficient to trigger large cas-
cades. But the issue of whether or not influentials satisfy
some lesser criterion of “importance” beyond their imme-
diate neighborhoods is harder to resolve. Certainly they tend
to trigger larger cascades than average, but whether they
trigger sufficiently larger cascades to qualify as“important”
is a matter of debate. Sometimes, as in the shaded region
of figure 3B, the impact of influentials is not only greater
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than average but also disproportionately great—a criterion
that would seem to serve as a reasonable definition of im-
portant. But if that is so, then figure 3 also shows that, under
most conditions, influentials are not so important—their
global impact isamost always lessthan proportional to their
influence measured locally, and often it is only marginaly
greater than average.

Importance, of course, may be irrelevant. It may be suf-
ficient that influentials are simply more effective than av-
erage, even if only marginally so. Given the intense interest
that influentials and opinion leaders have attracted ever since
they were first hypothesized over 50 years ago, it seems
unlikely that marginal importanceisall that isbeing asserted
on their behaf. Influentials, by definition, are relatively
rare—here they congtitute just 10% of the population—thus
they are necessarily more difficult to locate than average
individuals and possibly more difficult to mobilize aso (al-
though that is not necessarily the case). Whether or not the
additional impact of influentials justifies paying special at-
tention to them—uversus, for example, focusing on some
other group, or even recruiting individuals at random—is
therefore a matter that will depend, possibly delicately, on
the various costs associated with different strategies and the
particular details of the influence network.

A second way, however, in which influentials may play
acritical role in driving large cascades is as early adopters,
who, in our model, make up the critical mass via which
local cascades become global. Restricting our attention ex-
clusively to “global” cascades (which in our simulations
means cascades that reach more than 1,000 individuals in
apopulation of 10,000), we now consider the extent to which
influentials (defined still as the top 10% of the influence
distribution) appear as early adopters. Figure 4 shows that,
when influence networks are sparse (near the lower bound-
ary of the cascade window), early adopters tend to be more
influential than average (4A) but that, when influence net-
works are dense (i.e., a the upper boundary of the cascade
window), the opposite result obtains—early adopters are
substantially less influential than average (4B).

That early adopters should be at times more influential
than average and at other times less so has been noted pre-
viously (Boorman and Levitt 1980; Rogers 1995). However,
the origin of the result here is somewhat different from the
usual intuition that “central” individuals are highly attuned
to group norms and that thus they will tend to adopt early
when the group as awhole is progressive and to adopt later
when the group is conservative. In our model, no awareness
of group norms is necessary or indeed possible. Rather, the
principal criterion for an individual to be an early adopter
is smply whether or not they can be activated by a single
active neighbor. Because the threshold required for this* vul-
nerability” is inversely proportiona to how influential an
individual is (Watts 2002), on average, highly influential
individuals are less likely to be vulnerable (we will reverse
this assumption in the next section). On the other hand, by
contrast, the more influential an individual is, the more oth-
ers they can potentially activate once they themselves are
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FIGURE 4

AVERAGE INFLUENCE OF ADOPTERS AS A FUNCTION OF TIME FOR A THRESHOLD MODEL
ON RANDOM INFLUENCE NETWORKS
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Note.—A, plot corresponds to low density, n,,, = 1.5; B, plot corresponds to high density, n,,, = 5.75.

activated. To spread globally, therefore, cascades must strike
a compromise, propagating via the most influential of the
most easily influenced individuals.

A consequence of this trade-off is that, when n,, is low,
almost everyone is easy to influence and influential nodes
are therefore preferred; but when n,, is high, only below-
average nodes are sufficiently vulnerable to be activated
early on. As figure 4 indicates, however, even when the
early adopters are more influentia than average, they still
do not tend to be influentials. Specifically, we find that,
regardless of the density of the influence networks, the av-
erage influence of the top 10% of the influence distribution
clearly exceeds that of the early adopters, as indicated by
the dashed horizontal lines in figures 4A and 4B. At least
to the extent that the essential features of influence processes
are captured by this model, therefore, large-scale changes
in public opinion are not driven by highly influential people
who influence everyone else but rather by easily influenced
people influencing other easily influenced people.

VARIATIONS ON THE BASIC INFLUENCE
MODEL

Obviously these conclusions, athough qualitative in na-
ture, are derived from our analysis of a particular formal
model—a model that is, after all, exceedingly simple and
that makes a number of important assumptions. One might
suspect, therefore, that, if the assumptions of the model were
altered in certain respects, our conclusions regarding the
importance of influentials would change as well. To address
this concern, we now introduce a series of related models
that invoke different assumptions with regard to both in-
terpersona influence and influence networks. It will come
as no surprise that these different models can generate at
times dramatically different overall dynamics of influence
cascades, both quantitatively and qualitatively. We will also

find some additional conditions under which influentials do
appear to play important roles, either asinitiators or asearly
adopters. Nevertheless, our conclusion that, under most con-
ditions, cascades are driven by easily influenced, not highly
influential, individuals will remain.

Hyperinfluentias

Perhaps the most obvious objection to the model pre-
sented in the previous section is that the influence distri-
bution p(n) displays relatively little variation around its av-
erage, implying that the most influential individuals in our
model are, by assumption, not much more influential than
average. We would argue that this constraint is, in fact, one
of the more reasonable assumptions in our model and that
it is quite consistent with the empirical literature on influen-
tials (Burson-Marsteller 2001; Carlson 1965; Coleman et al.
1957; Merton 1968). Recall that opinion leaders are hy-
pothesized to exert interpersonal influence; thus we do not
consider media personalities and the like who may have far
greater visibility than ordinary individuals but whose influ-
ence is transmitted indirectly via media of various forms.

Related to the distinction between personal influence and
media influence are the various manifestations of Web-me-
diated influence, such as that exerted via Web-logs, socid
networking sites, online forums, and recommender systems.
Although individuals can indeed gain considerable exposure
for their views by expressing them online—a number of in-
dividual bloggers, for example, have gained large follow-
ings—the influence of the blogger seems closer to that of a
traditional newspaper columnist or professiona critic than to
that of atrusted confidant or even acasual acquaintance. Thus,
although the question of how different forms of influ-
ence—including traditional media, Web, and interpersond in-
fluence—compare and interact with each other is indeed an
interesting one, it is outside the scope of this article, which
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deals only with interpersonal influence. Nevertheless, evenin
this restricted context, it is interesting to examine how our
conclusions would change in a world where, on average,
individuals exert roughly the same amount of influence over
each other but where the distribution of that influenceis more
unequal than we have assumed so far.

We have therefore also studied a series of “generaized
random networks’ (Milo et al. 2004; Newman, Strogatz,
and Watts 2001), in which the influence distribution p(n)
can be chosen arbitrarily. Figure 5 shows two examples of
influence-degree distributions and their corresponding net-
works for influence distributions with the same average den-
sity n,, = 3 but with low (5A) and high (5B) variance,
respectively. Clearly, the most influential individuals in
high-variance networks influence many more of their peers
than in low-variance networks of the same average density.
For example, in a “low-variance” network of N = 10,000
individuals with n,, = 3, the most influential individual
influences roughly four times as many others (n,,,, = 12)
as an average person, whereas the corresponding individual
in a “high-variance” network of the same N and n,, influ-
ences roughly 40 times as many (n,,, = 119) others. Be-
cause of their extreme influence, we call these individuals
“hyperinfluentials,” where we emphasize that the intensity
of influence exerted per relation does not diminish as the
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number of influencees increases—a particularly strong as-
sumption in favor of the importance of influentials.

As figure 6 indicates, the presence of hyperinfluentials
does indeed affect the size and prevalence of influence cas-
cades. Most strikingly, there are now two regions in figure
6B in which the relative multiplier effect of influentials ex-
ceeds one, and these regions are wider than in figure 3B.
As one might expect, therefore, the relative impact of hy-
perinfluentials is greater than that of ordinary influentials,
and in some cases, it is impressive—for example, precisely
at the lower boundary of the cascade window, influentials
trigger cascades that are more than 10 times as large as
average (squares, left-hand peak, fig. 6B), even though they
directly influence only about six times as many of their peers
(solid line). Thus, by assuming that the difference between
average and influential individuals is much greater than we
did in the previous model, we find that their relative impact
is also greater, especialy in regions (near the edge of the
cascade window) where the conditions for cascades are only
marginally satisfied.

Surprisingly, however, the cascades that are triggered by
hyperinfluentials are on average less successful than those
triggered in low-variance influence networks, even by av-
erage individuals (compare squares in fig. 6A with circles
in fig. 3A), and the window in which they take place is

FIGURE 5

RANDOM INFLUENCE NETWORKS WITH PRESPECIFIED INFLUENCE DISTRIBUTIONS p(n)
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NoTe.—Network on the left exhibits low variance (similar to a standard random network); network on the right exhibits high variance.
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FIGURE 6

RELATIVE IMPACT OF INFLUENTIALS AS INITIATORS IN A HIGH-VARIANCE NETWORK
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NoTe.—A, Expected cascade size triggered by an influential (squares) and average (circles) individual, respectively, as a function of the density of the influence
network. B, The vertical shaded strip indicates the region in which the absolute multiplier effect (squares) for influentials, divided by relative direct influence of

influentials (solid line), yields a relative multiplier effect above unity (dashed line).

actualy dlightly narrower. The reason is that the increased
heterogeneity in influence, while advantaging the most in-
fluential individuals, disadvantages potential early adopters,
who are required for cascades to propagate.

Figure 7 confirms this intuition: early adopters are gen-
erally lessinfluential than they arein low-variance networks
(fig. 5), and thus they are less able to perpetuate a cascade
even though more of them may have been activated initialy
(i.e, by a hyperinfluential). Thus, the primary requirement
that early adopters be vulnerable not only excludes influen-
tials but aso impedes the progress of cascades in high-
variance networks relative to cascades in their low-variance
counterparts. In other words, if one could hypothetically
choose between “ordinary” influentials in a low-variance

network and hyperinfluentials in a high-variance network,
one would, paradoxically, prefer the former.

Group-Based Networks

Another objection to the basic model is that random net-
works, whether of low or high variance, are rarely consid-
ered good approximations of real social networks. Whereas
every acquaintance in a random network is chosen inde-
pendently of al other acquaintanceships, tiesin real social
networks exhibit strong interdependencies deriving from
various ordering principles such as, for example, socia roles
(Merton 1957; Nadel 1957), group affiliations (Breiger
1974; Feld 1981), homophily (Lazarsfeld and Merton 1954;

FIGURE 7

AVERAGE INFLUENCE OF ADOPTERS AS A FUNCTION OF TIME IN A HIGH-VARIANCE NETWORK
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NoTe.—A, Plot corresponding to low density, n,,, = 2.1. B, plot corresponding to high density, n,, = 5.1.
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McPherson, Smith-Lovin, and Cook 2001), and triadic clo-
sure (Rapoport 1963), all of which have the effect of intro-
ducing local structure into the influence network. We have
therefore considered a simple form of local structure that
generalizes naturally from our baseline random case but
which captures the notions (a) that one’s acquaintances are
more like to influence one another than some individual
chosen at random (Watts 1999) and (b) that people have
multiple—partly distinct and partly overlapping—groups of
acquaintances (Blau and Schwartz 1984; Simmel 1955;
Watts, Dodds and Newman 2002).

Asillustrated schematically in figure 8, the population of
N individuals is now divided into M groups of size g (i.e.,
N = Mg), and the groups are then randomly paired such
that each group, on average, is connected to m,,, other
groups. Each individual i is then alocated to a single group
I, which is designated his “primary group,” and he is then
connected to his neighbors as follows: (a) each member of
his primary group with probability p and (b) each member
of his m immediately neighboring groups with probability
g. Thus, by varying p and g we can create networks that
retain the globa connectivity of random networks but that
exhibit tunable within- and between-group density. In par-
ticular, we consider two kinds of group structure, which we
call “integrated” and “ concentrated.” |nintegrated networks,
each individual has the same probability of knowing amem-
ber of one of his neighboring groups as he does of knowing
one of his primary group members. In concentrated net-
works, by contrast, each individual knows at least as many
of his primary group members as he does all members of
his neighboring groups combined.

As with the introduction of hyperinfluentids, the pres-
ence—and even type—of group structure noticeably changes
the dynamics of influence cascades. Concentrated networks
(bottom row, fig. 9), for example, permit larger cascadesthan
integrated networks (top row), but integrated networks sup-
port cascades over a wider interval of n,.. Both kinds of
group structure, moreover, support cascades over wider in-
tervals than purely random influence networks (comparefigs.
9A and 9C with fig. 3A). Nevertheless, the basic conclusions
regarding influentials continue to hold—if anything, the ad-
dition of group structure appearsto diminish their importance.
Figures 9B and 9D both indicate that the relative multiplier
effect is less than unity everywhere except in a relatively
narrow diver of figure 9B, that is, for integrated networks
with low density. In concentrated networks, moreover, for
some values of n,, even the absolute multiplier effect
(sgquares) is less than one, meaning that, under some condi-
tions, influentials actually trigger smaller cascades than av-
erage individuals. This last result is particularly surprising,
but it appears to derive from the observation that influential
individuals tend to belong to influentia groups, thus, they
interact preferentially with other influentials who are, in gen-
eral, more difficult to influence. Although this tendency, usu-
ally known as “assortativity” (Newman 2002) is a conse-
guence of our modd’s assumptions, it is thought to be
characteristic of most real social networks (Newman and Park
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FIGURE 8

SCHEMATIC OF THE RANDOM GROUP NETWORK MODEL

2003); thus it is not unreasonable to assume that it arisesin
influence networks as well.

Figure 10, furthermore, shows once again that early
adopters are, on average, sometimes above (low density)
and sometimes below (high density) the overall average but
always below the average influence of influentials (dashed
line). The introduction of group structure, in other words,
while significantly altering the dynamics of influence cas-
cades, does not much change the ability of influentia in-
dividuals to trigger or sustain these cascades. If anything
group structure appears to further separate the dynamics of
interpersonal influence, as observed locally, from the dy-
namics of global processes like diffusion of innovations or
public opinion formation; thus, measurements, say of opin-
ion leadership, that focus on how influential an individual
iswithin their immediate environment are lessreliable mea-
sures of “importance” than they are in purely random
networks.

Changing the Influence Rule

A final feature of our basic model that one might rea-
sonably question is our particular choice of the influence
response function, which assumes that individuals only
adopt an innovation when some critical fraction of their
neighbors have adopted it. As discussed earlier, threshold
rules have been derived for a variety of relevant theoretical
scenarios, including coordination and public goods games,
so-called network technologies, and adoption decisions in
the presence of uncertainty (L opez-Pintado and Watts 2007).
Some limited empirical and experimental evidence al so sup-
ports the assumption that individuals follow threshold rules
when making decisions in the presence of socia influence.



INFLUENTIALS AND NETWORKS

000

FIGURE 9

RELATIVE IMPACT OF INFLUENTIALS AS INITIATORS FOR A THRESHOLD MODEL OF INFLUENCE
AND A RANDOM GROUP INFLUENCE NETWORK
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NoTe.—Top row reflects “integrated” group structure; bottom row reflects “concentrated” group structure.

In a laboratory experiment in which participants were mo-
tivated to anticipate the mgjority choice of a 24 person
group, Latané and L'Herrou (1996) found that individual
choice heuristics were well described by a threshold rule
with a critical fraction of ¢ = 1/2. Furthermore, Young
(2006) has shown that only threshold rules can account for
the empirical diffusion curves recorded by Griliches (1957)
in his landmark study of the adoption of hybrid corn in the
United States in the 1940s.

Nevertheless, threshold rules are only one of many con-
ceivable influence response functions, and in the absence of
comprehensive empirical evidence, one must assume that
different such functions may arise in different scenarios
(Dodds and Watts 2004, 2005). Threshold rules, moreover,
carry the additional implication that highly influentia in-
dividuals are, on average, more difficult to influence—the
reason being that an individual who influences many indi-
viduals is aso influenced by many and thus requires more
of his neighbors to adopt than an individual with the same
threshold who influences only a few others. Although this
implication is certainly plausible, it is not inevitable, and

one might wonder how our results regarding the limited
impact of influentials would change if highly influential in-
dividuals were no more difficult to influence, or perhaps
even easier to influence, than average.

To address this concern, we have considered a second
canonical type of influence model—known generically as a
“SIR” model—several variants of which have appeared in
the diffusion of innovations literature (Coleman et a. 1957;
Dodson and Muller 1978; Lehmann and Esteban-Bravo
2006; Van den Bulte and Joshi 2007), including the Bass
(1969) model, and have been studied extensively in math-
ematical epidemiology (Anderson and May 1991). In the
SIR model, individuals can occupy one of three
states—" susceptible” (S), “infected” (1), and “recovered”
(R)—where susceptible individuals become infected with
probability 8 (the infectiousness) when they encounter an
infective and where they subsequently recover at rater.

Although the SIR modél, like the threshold model, treats
interpersonal influence as a form of socia contagion, the
two models incorporate fundamentally different assump-
tions about the contagious process itself (Dodds and Watts
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FIGURE 10

AVERAGE INFLUENCE OF ADOPTERS AS A FUNCTION OF TIME FOR RANDOM-GROUP INFLUENCE NETWORKS
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Note.—Left-hand column plots are for low-density networks, n,,, = 2; right-hand column plots are for high-density ones, n,,, = 10; top row corresponds to

integrated groups; bottom row corresponds to concentrated groups.

2005). Thethreshold model assumes, in effect, a cost-benefit
calculation on the part of the adopter, and therefore requires
that decision makers can, in effect, remember a sequence
of observations over time. SIR models, by contrast, are
“pure’” contagion models in the sense that every contact
between an infective and a susceptible is treated indepen-
dently of any other. Mathematically, the models are very
different as well. As illustrated in figure 11, the influence
response function for the SIR model is a concave function
that increases with the absolute number of “infected” con-
tacts, whereas the threshold response function is at first con-
vex and then concave and depends on the infected fraction.
The difference is central to our argument because, in the
SIR model, the more influential an individua is, the more
easily influenced he or she is as well, which is the opposite
of the threshold case. It has recently been shown, in fact,
that SIR and threshold models are extreme cases on a con-
tinuum of possible contagion models (Dodds and Watts
2004, 2005); thus, by testing the SIR model, we effectively
span a wide range of possible assumptions about binary
decision models with positive externalities.

Figure 12 shows, as might be expected, that the different
choice of influence model has a dramatic impact on the
dynamics of socia influence propagation, both for low-var-
iance (top tow) and high-variance (bottom row) networks,
where the latter contains what we have called hyperinfluen-
tials. Most strikingly, there is no longer an upper bound to
the cascade window. Because highly influential individuals
are now more, not less, susceptible to influence themselves,
as the networks become more connected, cascades become
larger and also more frequent. It is perhaps surprising, there-
fore, that under such dramatically different circumstances,
our conclusions with respect to influentials are largely un-
changed. As before, influentials tend to trigger marginally
larger cascades than average individuals, but their relative
impact remains limited—in fact, even more limited for the
SIR model than it is for the threshold model. In particular,
unlike with other models, here the relative multiplier effect
is aways less than one, even, surprisingly, when hyperin-
fluentials are present (fig. 12D). The reason, however, is not
that influentials trigger smaller cascades than they do in the
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FIGURE 11

INFLUENCE RESPONSE FUNCTIONS FOR (A) THE SIR MODEL AND (B) THE DETERMINISTIC THRESHOLD RULE
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threshold model but rather that average individuals trigger
larger ones.

Another qualitative difference between the SIR and
threshold modelsisthat early adopters are consistently more
influential than average in both low- and high-density re-
gimes, as shown in figure 13 (again, for low- and high-
variance networks in the top row and the bottom row, re-
spectively). The reason, once again, is that more influential
individuals are more, not less, susceptible to influence them-
selves; thus, there is no trade-off between influence and
influenceability. Given this difference, one might expect
that, in the SIR model, the population of early adopters will
include more influentials. As figure 13 shows, this intuition
is not supported for the case of “ordinary” influentials (top
row) but is supported for hyperinfluentials when the cor-
responding network is also sufficiently sparse: the first two
“generations’ of early adopters in figure 13C are clearly
influentials. Thus, although hyperinfluentials do not appear
to be disproportionately effective in triggering large cas-
cades in the SIR model, their combination of greater influ-
ence and greater influenceability renders them important as
very early adopters, at least under some conditions.

In summary, the series of models we have considered
offer some reasonably clear guidelines with regard to what
conditions must be satisfied in order for influentials to play
an important rolein processes like public opinion formation.
First, “ordinary” influentials of the kind considered in low-
variance networks appear to be important as initiators of
large cascades where the threshold rule is in effect and in
conditions where these cascades are only marginally pos-
sible (fig. 3B). They do not, however, play important roles
as initiators under most conditions of the threshold model,
under any conditions as early adopters, or when the SIR
model is in effect. Second, “hyperinfluentials’ of the kind
that arise in high-variance networks are important as initi-
ators under a wider range of conditions than ordinary in-
fluentials but still only when the threshold rule isin effect.
Third, when the SIR ruleisin effect, hyperinfluentials play

an important role as early adopters, when networks are suf-
ficiently sparse, but not asinitiators. Finally, group structure
appears to generally impede the effectiveness of influentials
both as initiators and early adopters.

DISCUSSION

Whether these results should be regarded as undermining
what we have called the influentials hypothesis or as sup-
porting it is ultimately an empirical question. Our main
point, in fact, is not so much that the influentials hypothesis
is either right or wrong but that its microfoundations, by
which we mean the details of who influences whom and
how, require very careful articulation in order for itsvalidity
to be meaningfully assessed. Whether stated explicitly or
not, any claim to the effect that influentials are important
necessarily makes a number of assumptions regarding the
nature of interpersonal influence, the structure of influence
networks, and even what is meant by “important.” Regard-
less of which particular parameter values and even influence
models future empirical work turns out to support, therefore,
the primary contribution of simulation studies like the one
we have conducted is to highlight the importance of spec-
ifying these assumptions precisely and to focus empirical
attention on those that seem most relevant.

Looking over the full range of models and assumptions
that we have considered, however, we would argue that our
study also makes a second, albeit more tentative, contri-
bution, which is that, under most of these conditions, in-
fluentials are less important than is generally supposed, ei-
ther as initiators of large cascades or as early adopters. This
statement, we emphasize, does not mean that influentia in-
dividuals do not exist or that they never display the kind of
importance that is implied by the influentials hypothesis.
Nevertheless, the conditions we have identified under which
influential individuals can play important roles are neither
particularly common nor do they seem especially likely to
arise in many real situations. The existence of hyperinfluen-
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FIGURE 12

RELATIVE IMPACT OF INFLUENTIALS AS INITIATORS FOR A SIR MODEL OF INFLUENCE
AND A RANDOM INFLUENCE NETWORK

avg

avg

NoTte.—Compare to fig. 3. Symbols and line styles are as in fig. 3. Top row corresponds to low-variance networks, and bottom row corresponds to high-variance

networks.

tials, for example, seemsto us more atheoretical possibility
than an empirical reality—we are not aware of any empirical
studies in which individuals have been shown to influence
over 100 others directly—especialy if one aso requires
them to be easier to influence than average individuals.

In fact, while any assertion regarding the lack of impor-
tance of influentials is necessarily speculative, based on our
results, we would go as far as to suggest that in focusing
on the properties of afew “specia” individuals, the influen-
tials hypothesis is in some important respects a misleading
model for social change. Under most conditions, we would
argue, cascades do not succeed because of a few highly
influential individuals influencing everyone else but rather
on account of acritical mass of easily influenced individuals
influencing other easy-to-influence people. In our models,
influentials have a greater than average chance of triggering
this critical mass, when it exists, but only modestly greater,
and usually not even proportional to the number of people
they influence directly. They may aso participate in the
critical mass, especially when they are simultaneously hy-
perinfluential and easily influenced, but under most condi-
tions they do not. Thus, to the extent that particular indi-

viduals appear, after thefact, to have been disproportionately
responsible for initiating a large cascade or sustaining it in
its early stages, the identities and even characteristics of
those individuals are liable to be accidents of timing and
location, not evidence of any special capabilities or superior
influence.

Although this claim may seem implausible in light of
received wisdom, it has numerous analogues in natural sys-
tems. Some forest fires, for example, are many times larger
than average; yet no one would claim that the size of aforest
fire can bein any way attributed to the exceptional properties
of the spark that ignited it or the size of the tree that was
the first to burn. Major forest fires require a conspiracy of
wind, temperature, low humidity, and combustible fuel that
extends over large tracts of land. Just as for large cascades
in socia influence networks, when the right global com-
bination of conditions exists, any spark will do; when it
does not, none will suffice. Avalanches, earthquakes, and
other natural disasters all share a similar ambiguity with
respect to initial conditions—in all these cases, very similar
initial disturbances can, under some conditions, lead to dra-
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FIGURE 13

AVERAGE INFLUENCE OF ADOPTERS AS A FUNCTION OF TIME FOR A SIR MODEL
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matically different outcomes; under other conditions, very
different disturbances can yield indistinguishable results.
Analogous results in human systems can also be inferred
from the literature on so-called information cascades (Bikh-
chandani et al. 1992, 1998; De Vany and Walls 1996) in
which small, possibly random, fluctuations at critical junc-
tures cause even large groups to become locked into a par-
ticular collective choice. Because the outcome of the cascade
depends to such a great extent on the choices of a small
number of individuals who arrive at the right time, anyone
observing the final outcome might be tempted to label them
as influentials. Yet models of information cascades, as well
as human subjects experiments that have been designed to
test the models (Anderson and Holt 1997; Kubler and Weiz-
sacker 2004), are explicitly constructed such that there is
nothing special about those individuals, either in terms of
their persona characteristics or in their ability to influence
others. Thus, whatever influence these individuals exert on
the collective outcome is an accidental consegquence of their
randomly assigned position in the queue—a result that has
been demonstrated recently for more complicated and re-
alistic scenarios as well (Salganik et a. 2006).
Nevertheless, anytime some notable social changeis rec-
ognized, whether it be a grassroots cultural fad, a successful
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= 1.5) and plot B corresponds to high-density (n,,, = 5.75) random influence networks.

marketing campaign, or a dramatic drop in crime rates, it
is tempting to trace the phenomenon to the individuals who
“started it” and to conclude that their actions or behavior
“caused” the events that subsequently took place. Indeed,
because the outcome is already known, it is always possible
to construct what looks like a causal story by picking out
some of the defining details of the individuals in ques-
tion—even when success is completely random (Taleb
2001). Likewise, it is tempting to assert that these individ-
uals must have been specia in some way—otherwise, how
could the striking event that we now know happened have
come to pass? Just because the outcome is striking, however,
does not on its own imply that there is anything correspond-
ingly special about the characteristics of the individualsin-
volved (Goldenberg, Lehmann, and Mazursky 2001) or that
their participation was either a necessary or sufficient con-
dition for a change of the kind that occurred to have taken
place (Lieberson 1991). Although simulation models of the
kind we have studied here cannot ultimately resolve such
debates, they can contribute to them by prompting us to
guestion our intuitive understanding of social processes, by
suggesting alternative explanations, and by pointing out pos-
sible directions for empirical studies.
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