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Abstract 

Due to data constraints, the intergenerational income elasticity (IGE)—the workhorse measure of 

economic mobility—has very often been estimated with short-run income measures drawn from 

two independent samples and using the Two-Sample Two-Stage Least Squares (TSTSLS) 

estimator. The IGE conventionally estimated in the mobility literature, however, has been widely 

misinterpreted as pertaining to the conditional expectation of children’s income when in fact it 

pertains to its conditional geometric mean. In line with recent work, this article focuses almost 

exclusively on the IGE of expected income. It (a) proposes that estimation of this IGE in the two-

sample context be based on a recently advanced two-sample generalized method of moments 

(GMM) estimator of the exponential regression model, and (b) introduces the user-written 

program igetwos, which implements that estimator as well as a GMM version of the TSTSLS 

estimator. The new program allows to use Stata to estimate both the IGE of the expectation and 

the IGE of the geometric mean when the income information for parents and children is available 

in two independent samples.  

 

Keywords: intergenerational income elasticity, economic mobility, elasticity of the expectation, 

exponential regression model, instrumental variables, generalized method of moments, two-

sample estimation, two-sample two-stage least squares estimator.
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1. Introduction

The intergenerational elasticity (IGE) is the workhorse measure of intergenerational 

economic mobility. It has been widely estimated over the last four decades, very often with the 

goal of providing a summary assessment of the level of income or earnings mobility within a 

country (for reviews, see Solon 1999:1778-1788; Corak 2006; Jäntti and Jenkins 2015:Secs. 

10.5.2 and 10.5.3). Beyond this elementary goal, the IGE has been used, among other purposes, 

to conduct comparative analyses of economic mobility and persistence across countries, regions, 

demographic groups, cohorts, and time periods (e.g., Chadwick and Solon 2002; Hertz 2005, 

2007; Aaronson and Mazumder 2008; Björklund and Jäntti 2000; Mayer and Lopoo 2008; 

Bloome and Western 2011); to examine the relationship between cross-sectional economic 

inequality and mobility across generations (e.g., Corak 2013; Bloome 2015); and to study the 

impact of social policies and political institutions on inequality of opportunity (e.g., Bratsberg et 

al. 2007; Landersø and Heckman 2016). 

Now, despite the IGE’s centrality in the intergenerational-mobility field, Mitnik and 

Grusky (2017) have recently shown that this elasticity has been widely misinterpreted. Indeed, 

the IGE has been construed as pertaining to the expectation of children’s income conditional on 

their parents’ income—as apparent, for instance, in its oft-invoked interpretation as a measure of 

regression to the (arithmetic) mean. However, the IGE estimated in the literature pertains to the 

conditional geometric mean of the children’s income. As explained later, this not only makes all 

conventional interpretations of the IGE invalid but also has very deleterious methodological 

consequences.  

Mitnik and Grusky (2017) have argued that both the conceptual and the methodological 

problems can be solved in a straightforward manner by simply replacing the IGE of the 
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geometric mean (the de facto estimated IGE) by the IGE of the expectation (the IGE that 

mobility scholars thought they were estimating) as the workhorse intergenerational elasticity. 

They also called for effectuating such replacement, which requires identifying appropriate 

estimators and, when necessary, making them available in the statistical packages most 

frequently employed by mobility scholars.  

As shown in recent work that has estimated the IGE of the expectation (Mitnik and 

Grusky 2017; Mitnik 2017a, 2017b and 2017c; Mitnik et al. 2015), if income information for 

both parents and children is included in the same sample, estimation of this IGE may be based on 

(a) the Poisson Pseudo Maximum Likelihood (PPML) estimator (Santos Silva and Tenreyro 

2006), and (b) the additive-error version of the Generalized Method of Moments (GMM) 

instrumental variables (IV) estimator of the Poisson or exponential regression model (Mullahy 

1997; Windmeijer and Santos Silva 1997), or GMM-IVP estimator for short. The PPML 

estimator may be used to estimate the IGE of expected income in any context in which the 

Ordinary Least Squares estimator has been or may be used to estimate the conventional IGE 

(Mitnik 2017a); similarly, the GMM-IVP estimator may be used to estimate the former IGE in 

any context in which the Two-Stage Least-Squares (or other linear IV estimators) have been or 

may be used to estimate the latter IGE (Mitnik 2017b). Both the PPML and the GMM-IVP 

estimators are available in Stata. The PPML estimator is available with several commands, 

including the command poisson. The GMM-IVP estimator is available with the command 

ivpoisson. Mitnik (2017d) provides a detailed tutorial for how to use these commands to 

estimate the IGE of expected income in Stata. 

Unfortunately, relatively few countries count with samples in which the incomes of 

parents and their children are both measured in some period during adulthood. For this reason, 
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the conventional IGE has very often been estimated not just with annual and other short-run 

proxy income measures but with short-run income measures drawn from two independent 

samples and using the Two-Sample Two-Stage Least Squares (TSTSLS) estimator (Jerrim et al. 

2016). In order to make possible the estimation of the IGE of expected income when information 

is available in two independent samples, Mitnik (2007c) advanced a two-sample GMM estimator 

of the exponential regression model, to which I will refer as the GMM-E-TS estimator, as well as 

an associated generalized error-in-variables model. The GMM-E-TS estimator may be used to 

estimate the IGE of expected income in any context in which the TSTSLS estimator has been or 

may be used to estimate the conventional IGE.  

In this article I introduce the user-written program igetwos, which implements the GMM-

E-TS estimator in Stata and thus allows to easily estimate the IGE of the expectation with 

information from independent samples. This new program also implements a two-equation 

GMM version of the TSTSLS estimator. Although point estimates of the conventional IGE are 

straightforward to obtain with the TSTSLS estimator using available Stata commands (e.g., 

regress), conducting statistical inference requires accounting for the two-step nature of the 

estimation by using resampling approaches or complicated closed-form asymptotic variance 

estimators (see Inoue and Solon 2010) that are not available with any Stata command. This 

problem is solved by igetwos, which relies on standard asymptotic inferential procedures. In 

addition, while the TSTSLS estimator is not efficient when implemented with more than one 

instrument, its GMM counterpart is efficient regardless of the number of instruments. 

The structure of the rest of the paper is as follows. I first explain why the conventional 

IGE pertains to the conditional geometric mean of children’s income rather than to its 

conditional expectation, as well as Mitnik and Grusky’s (2017) proposal to redefine the IGE used 
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as the workhorse measure of economic mobility. Next, I introduce the GMM-E-TS estimator, 

and discuss its key properties when employed to estimate the IGE of expected income with long-

run and with short-run proxy income variables, and with valid and invalid instruments. This 

discussion also includes some information regarding the “lifecycle biases” that may affect the 

estimation of IGEs. After that I present the command igetwos, and explain how to use it to 

estimate IGEs in the two-sample context. The last section offers brief concluding comments. 

2. The IGE of what? Redefining the workhorse intergenerational elasticity 

As I already indicated, the conventionally estimated IGE has been widely misinterpreted. 

While mobility scholars have interpreted it as the elasticity of the expectation of children’s 

income or earnings conditional on parental income, that IGE pertains in fact to the conditional 

geometric mean. Closely following Mitnik and Grusky’s (2017) analysis, the standard population 

regression function (PRF) posited in the literature, which assumes the elasticity is constant across 

levels of parental income, is:  

𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥,                                               [1] 

where 𝑌𝑌 is the child’s long-run income or earnings, X is long-run parental income or father’s 

earnings, 𝛽𝛽1 is the IGE as specified in the literature, and I use expressions like “Z|𝑤𝑤” as a 

shorthand for "𝑍𝑍|𝑊𝑊 = 𝑤𝑤.” The parameter 𝛽𝛽1 is not, in the general case, the elasticity of the 

conditional expectation of the child’s income. This would hold as a general result only if 

𝐸𝐸(ln𝑌𝑌|𝑥𝑥) = ln𝐸𝐸(𝑌𝑌|𝑥𝑥). But, due to Jensen’s inequality, the latter is not the case. Instead, as 

𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) = ln exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), and 𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), Equation [1] is equivalent to 

ln𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥 ,                                           [2] 

5



 

where GM denotes the geometric mean operator. Therefore, 𝛽𝛽1 is the elasticity of the conditional 

geometric mean, i.e., the percentage differential in the geometric mean of children’s long-run 

income with respect to a marginal percentage differential in parental long-run income.1 

As the geometric mean is undefined whenever an income distribution includes zero in its 

support, the IGE is undefined as well when this is the case. Mitnik and Grusky (2017:Section IV) 

have argued that this has serious methodological consequences: It (a) makes it impossible to 

determine the extent to which parental economic advantages are transmitted through the labor 

market among women (as many women have zero earnings), and (b) greatly hinders research on 

the role that marriage plays in generating the observed levels of intergenerational persistence in 

family income (as many people remain single or have nonworking spouses, and therefore cannot 

be included in analyses examining the relationship between people’s parental income and the 

income contributed by their spouses). As a result, the study of gender and marriage dynamics in 

intergenerational processes has been badly hampered. Equally important, Mitnik and Grusky 

(2017:Section III) have shown that, as a consequence of mobility scholars’ expedient of dropping 

children with zero earnings from samples (to address what is perceived as the problem of the 

logarithm of zero being undefined), estimation of earnings IGEs with short-run proxy earnings 

measures is affected by substantial selection biases. This makes the current use of the IGE of 

men’s individual earnings as an index of economic persistence and mobility in a country a rather 

problematic practice.2 

To address these problems, Mitnik and Grusky (2017) have called for redefining the 

workhorse measure of economic mobility. This entails replacing the PRF of Equation [1] by a 

                                                           
1 The parameter 𝛽𝛽1 is (also) the IGE of the expectation only when the error term satisfies very special conditions 
(Santos Silva and Tenreyro 2006; Petersen 2017; Wooldridge 2002:17). 
2 Importantly, the methodological problems discussed in this paragraph can’t be solved by replacing zeros by “small 
values” (Mitnik and Grusky, 2017:15-16). 
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PRF whose estimation delivers estimates of the IGE of the expectation in the general case. Under 

the assumption of constant elasticity, that PRF can be written as:                                         

ln𝐸𝐸(𝑌𝑌|𝑥𝑥) = 𝛼𝛼0 + 𝛼𝛼1 ln 𝑥𝑥 ,                                                   [3]     

where 𝑌𝑌 ≥ 0, 𝑋𝑋 > 0 and  𝛼𝛼1 = 𝑑𝑑 ln𝐸𝐸(𝑌𝑌|𝑥𝑥)
𝑑𝑑 ln𝑥𝑥

 is the percentage differential in the expectation of 

children’s long-run income with respect to a marginal percentage differential in parental long-run 

income. Crucially, (a) all interpretations incorrectly applied to the conventional IGE are correct 

or approximately correct under this formulation (see Mitnik and Grusky 2017:Section V.A), and 

(b) the IGE of the expectation is fully immune to the methodological problems affecting the IGE 

of the geometric mean and, in particular, is very well suited for studying the role of marriage in 

the intergenerational transmission of advantage (see Mitnik and Grusky 2017:Section V.B for 

details; and Mitnik et al. 2015:64-68 for an empirical application). 

3. Estimation of the IGE of the expectation in the two-sample context 

 As I noted earlier, the conventional IGE has very often been estimated not just with 

annual and other short-run proxy income measures, but with short-run income measures drawn 

from two independent samples and using the TSTSLS estimator. The main concern with this 

strategy has been that the instruments typically available (e.g., parental education and 

occupation) are most likely positively correlated with both the logarithm of short-run parental 

income and the error term in the PRF of interest, making them endogenous.3 When this is the 

case, estimates may still be useful if the sign of their asymptotic bias can be established. The 

standard interpretation in the literature has been that TSTSLS estimates are useful as upper-

bound estimates. However, the available justification for this interpretation falls short, as it 

                                                           
3 This has been a concern with the IV estimation of the conventional IGE more generally, regardless of whether it is 
estimated in the one-sample or in the two-sample context (Solon 1992; Mitnik 2017b; Jerrim et al. 2016).  
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counterfactually assumes that mobility scholars have long-run income variables in their samples 

(Jerrim et al. 2016), which is essentially never the case. A fully-correct analysis needs to take 

into account that estimation is based on short-run proxy measures, i.e., that there is measurement 

error. This applies equally to the conventional IGE and to the IGE of the expectation. 

The two-sample GMM estimator of the exponential regression model advanced by 

Mitnik (2017c) is based on a two-sample two-step estimator. I present this estimator next. I first 

assume that the income variables are measured without error, and then introduce measurement 

error into the analysis. This is followed by a description of the approach for transforming the 

two-sample two-step estimator into a GMM estimator, a brief summary of what is known about 

the empirical performance of the estimator, and some comments regarding lifecycle biases. 

3.1. The two-sample two-step estimator with a valid instrument 

In the two-sample context, the “main sample” has the children’s income information, the 

“auxiliary sample” has the parents’ income information, and both samples have a common set of 

variables (e.g., parents’ education, father’s occupation) that may be used as instruments or 

predictors for the parents’ income information. Operationally, the two-sample two-step estimator 

simply extends the approach used by the TSTSLS estimator of the linear regression model to the 

estimation of the exponential regression model. Thus, when there is only one instrumented 

variable (a) the first step estimates a linear projection of that variable on the instruments and any 

other right-side variables included in the second step, using information from the auxiliary 

sample, and (b) the second step estimates the exponential regression model of interest using the 

PPML estimator and the main sample, with the instrumented variable replaced by its predicted 

values (which are computed with the parameters estimated in the first step).  
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I specify in this subsection the assumptions under which this two-sample two-step 

estimator of the exponential regression model is consistent or approximately consistent when all 

income variables are measured without error.4 Without any loss of generality, I assume in what 

follows that 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(ln𝑋𝑋) = 1. 5 

Rewriting Equation [3] in additive-error form, the PRF of interest is 

𝑌𝑌 = exp(𝛼𝛼0 + 𝛼𝛼1 ln𝑋𝑋) + Ψ,                                        [4] 

where 𝐸𝐸(Ψ|𝑥𝑥) = 0. Assuming for simplicity that there is only one quantitative instrument 

denoted by T (e.g., years of parental education), the fist-step equation is the following population 

linear projection: 

ln𝑋𝑋 = 𝛾𝛾0 + 𝛾𝛾1𝑇𝑇 + 𝑅𝑅.                                                       [5]  

Consider now the following assumptions, which apply to all t when relevant: 

  𝐴𝐴1.  𝐸𝐸(𝑅𝑅|𝑡𝑡) = 0                                        

           𝐴𝐴2.∀𝑐𝑐 > 0,𝐸𝐸(exp(𝑐𝑐𝑅𝑅)|𝑡𝑡) = 𝐸𝐸(exp(𝑐𝑐𝑅𝑅))   

    𝐴𝐴2′.𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅|t) = Var(𝑅𝑅)                                         

    𝐴𝐴3.  𝛾𝛾1 ≠ 0   

𝐴𝐴4.  𝐸𝐸(Ψ|𝑡𝑡) = 𝐸𝐸(Ψ).                             

Assumptions A1 and A3 entail that the expectation of the logarithm of parental income 

conditional on the value of T is a linear function of that value, while assumptions A3 and A4 

entail that T is a valid instrument. Assumption A2 is similar to the standard assumption made for 

the estimation of Poisson models with unobserved heterogeneity (see, e.g., Winkelmann 2008).  

                                                           
4 Tersa et al. (2008) have shown that, in the nonlinear context, “predictor-substitution IV estimators” are not 
consistent in the general case. 
5 This involves no loss of generality because it can always be achieved by simply changing the monetary units used 
to measure income. 
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Assumption A2’, which posits that the error in the first-step equation is homoscedastic, provides 

an alternative to A2. Although A2’ is not strictly weaker than A2 (neither assumption entails the 

other), the fact that the dependent variable in the first-step equation is the logarithm of an income 

variable may make A2’ more attractive than A2.  

I start by showing that under assumptions A1, A2, A3 and A4 the two-sample estimator 

of 𝛼𝛼1 is consistent. Substituting Equation [5] into Equation [4], and using A1 and A3, yields: 

 𝑌𝑌 = exp(𝛼𝛼0 + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) + 𝛼𝛼1𝑅𝑅) + Ψ                                          

𝐸𝐸(𝑌𝑌|𝑡𝑡) = exp�𝛼𝛼0 + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)� 𝐸𝐸(exp(𝛼𝛼1 𝑅𝑅)|𝑡𝑡) + 𝐸𝐸(Ψ|𝑡𝑡).     [6]             

Using now A2, Equation [6] reduces to: 

𝐸𝐸(𝑌𝑌|𝑡𝑡) = exp�𝛼𝛼0′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)� + 𝐸𝐸(Ψ|𝑡𝑡),                               [7]          

where 𝛼𝛼0′ = 𝛼𝛼0 + ln𝐸𝐸(exp(𝛼𝛼1𝑅𝑅); and it further reduces to  

𝐸𝐸(𝑌𝑌|𝑡𝑡) = exp�𝛼𝛼0′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)�                                                    [8]          

if assumption A4 also holds, that is, if the instrument is valid.6 If the variable 𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) were 

available in the estimation sample, Equation [8] would be consistently estimated by the PPML 

estimator (e.g., Santos Silva and Tenreyro 2006). Under a standard identification condition for 

two-step M-estimators (e.g., Wooldridge 2002:354), the PPML estimator that replaces 

𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) by consistent estimates obtained in the first step, is also consistent. 

Going back to Equation [6], an alternative justification for this estimator as 

“approximately consistent” can be obtained by replacing A2 by A2’. Indeed, it can be shown 

(Mitnik 2017c:11) that this yields: 

𝐸𝐸(𝑌𝑌|𝑡𝑡) ≅ exp�𝛼𝛼0′′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)� + 𝐸𝐸(Ψ|𝑡𝑡),                               [7′]          

                                                           
6 𝐸𝐸(Ψ|𝑡𝑡) = 0 follows from 𝐸𝐸(Ψ|𝑥𝑥) = 0 (see Equation [4]) and assumption A4. 
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where 𝛼𝛼0′′ = 𝛼𝛼0 + ln(1 + 0.5  [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅)). Here I focus on the first justification, as both lead 

to pragmatically equivalent conclusions.  

 Resorting to Taylor-series expansions, Mitnik (2017a:16) has advanced an approximated 

closed form expression for 𝛼𝛼1 in a PRF like [8]. For future reference, I note that it yields: 

𝛼𝛼1 ≅ 𝐶𝐶𝛼𝛼1 − ��𝐶𝐶𝛼𝛼1�
2
− 𝑉𝑉𝛼𝛼1�

1
2 ,                                           [9]           

where  

𝑉𝑉𝛼𝛼1 = 2 �𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸(ln𝑋𝑋 |𝑇𝑇)��
−1

                                           [9𝑉𝑉]           

𝐶𝐶𝛼𝛼1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) )]−1. 7                                     [9𝑏𝑏]           

3.2. The two-sample two-step estimator with an invalid instrument 

 Let’s now assume that estimation is not based on the valid instrument 𝑇𝑇 but on the 

invalid instrument 𝑻𝑻, and that although A4 does not hold it is the case that: 

    𝐴𝐴3′.  𝜸𝜸𝟏𝟏 > 0         

         𝐴𝐴4′.  𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) > 0.                                         

(Throughout I use bold font to indicate that a parameter, expression or variable pertains to the 

analysis with the invalid instrument.) As 𝜸𝜸𝟏𝟏 > 0 if and only if ln𝑋𝑋 and T are positively 

correlated, in the “long-run context” A3’ and A4’ are equivalent to the standard assumption that 

the (invalid) instruments typically available to mobility scholars are positively correlated with 

the logarithm of parental income and with the error term of the PRF of interest.  

To determine the implications of A3’ and A4’, it is useful to rewrite the counterpart to 

Equation [7] as follows: 

                                                           
7  Equations [9], [9a] and [9b] assume 𝐸𝐸(𝑌𝑌) = 1, which is true by hypothesis, and 𝐸𝐸(𝐸𝐸(ln𝑋𝑋 |𝑇𝑇)) = 1. The latter 
follows from 𝐸𝐸(ln𝑋𝑋) = 1, which is true by hypothesis. 
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𝐸𝐸(𝒀𝒀|𝒕𝒕) = exp�𝜶𝜶𝟎𝟎′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝒕𝒕)�                            [10]      

where  𝒀𝒀 ≡ 𝑌𝑌 − 𝐸𝐸(Ψ|𝑻𝑻). Now, making use again of the approximated closed-form expression 

introduced above, we may write: 

𝛼𝛼1 ≅ 𝑪𝑪𝛼𝛼1 − ��𝑪𝑪𝛼𝛼1�
2
− 𝑽𝑽𝛼𝛼1�

1
2 ,                                           [11]           

where  

𝑽𝑽𝛼𝛼1 = 2 �𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)��
−1

                                           [11𝑉𝑉]           

𝑪𝑪𝛼𝛼1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝒀𝒀,𝐸𝐸(ln𝑋𝑋 |𝑻𝑻) )]−1                                                               

= �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)� − 𝜸𝜸𝟏𝟏𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻)�
−1

. 8        [11𝑏𝑏]  

Actual estimation, however, is not based on 𝒀𝒀 but on 𝑌𝑌, which is equivalent to making 

𝜸𝜸𝟏𝟏𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) = 0. As assumptions A3’ and A4’ entail that 𝜸𝜸𝟏𝟏𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) > 0, and  𝜕𝜕𝛼𝛼1
𝜕𝜕𝑪𝑪𝛼𝛼1  

< 0 

(Mitnik 2017a:16), it follows that the probability limit of the two-sample two-step estimator of 

the IGE of the expectation with the invalid instruments typically available to mobility scholars is 

larger than the true parameter. This is the same conclusion that is obtained for the conventional 

IGE when the latter is estimated with the TSTSLS estimator, also under the assumption that the 

samples have information on long-run rather than short-run income.  

3.3. Two-sample two-step estimation of the IGE of the expectation with short-run 

income variables 

Let 𝑍𝑍 ≥ 0 be the children’s short-run income and 𝑆𝑆 > 0 be the parents’ short-run income. 

Without any loss of generality, I assume that 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑆𝑆) = 1. And, just to simplify the 

                                                           
8 Equations [11], [11a] and [11b] assume that 𝐸𝐸(𝒀𝒀) = 1 and that 𝐸𝐸�𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)� = 1. This follows immediately from 
𝐸𝐸(𝑌𝑌) = 1 and 𝐸𝐸(ln𝑋𝑋) = 1, which are true by hypothesis. In deriving [11b] I applied the law of total covariance. See 
Mitnik(2017c:12) for the step-by-step derivation. 
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exposition, I ignore here the possible existence of lifecycle biases, which the generalized error-

in-variables model advanced by Mitnik (2017c) does consider (more on this in subsection 3.6). 

The first-step equation is now the population linear projection 

ln 𝑆𝑆 = 𝛾𝛾�0 + 𝛾𝛾�1𝐷𝐷 + 𝑄𝑄,           

where 𝐷𝐷 is a generic instrument, i.e., an instrument that may or may not be valid.  

Given that lifecycle biases have been ruled out, the short-run income measures can be 

expressed as:  

𝑍𝑍 = 𝑌𝑌 + 𝑊𝑊                                                                 [12] 

𝑆𝑆 = 𝑋𝑋 + 𝑃𝑃.                                                                  [13] 

From 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(𝑋𝑋) = 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑆𝑆) = 1, it follows that 𝐸𝐸(𝑊𝑊) = 𝐸𝐸(𝑃𝑃) = 0. Let’s now make 

the following measurement-error assumptions: 

𝐺𝐺1.𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝐷𝐷) = 0                                         

𝐺𝐺2.𝐸𝐸(𝑃𝑃|𝑑𝑑) = 𝐸𝐸(𝑃𝑃).                                       

It is easy to show that when these measurement-error assumptions hold (a) assumption A1 entails 

𝐸𝐸(𝑄𝑄|𝑑𝑑) = 0, and (b) each of assumptions A3 and A3’ entails 𝛾𝛾�1 ≠ 0. 

Therefore, under A1, M1 and M2, the second-step equation may be written as: 

𝐸𝐸(𝑍𝑍|𝑑𝑑) = exp(𝛼𝛼�0 + 𝛼𝛼�1𝐸𝐸(ln 𝑆𝑆 |𝑑𝑑)). 

Then, using again the approximated closed-form expression employed before, we have: 

𝛼𝛼�1 ≅ 𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�
2
− 𝑉𝑉𝛼𝛼�1�

1
2 ,                                       [14]        

where 

𝑉𝑉𝛼𝛼�1 = 2 �𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸(ln 𝑆𝑆 |𝐷𝐷)��
−1

                                                                                        

           = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(ln𝑋𝑋|𝐷𝐷) + 𝐸𝐸(𝑃𝑃|𝐷𝐷))]−1                                                                         
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          = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(ln𝑋𝑋|𝐷𝐷))]−1.                                                       [14𝑉𝑉]                         

𝐶𝐶𝛼𝛼�1 = �𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍,𝐸𝐸(ln 𝑆𝑆 |𝐷𝐷)��
−1

                                                                                       

          = �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝐷𝐷)� + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝐸𝐸(𝑃𝑃|𝐷𝐷)) + 𝛾𝛾�1𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝐷𝐷)�
−1

                      

                         = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝐸𝐸(ln𝑋𝑋|𝐷𝐷))]−1. 9                                                   [14𝑏𝑏]                 

So let’s assume that Equations A1, A2, A3 and A4 hold, that is, let’s consider the case in 

which the instrument is valid. Comparing Equations [14], [14a] and [14b] with Equations [9], 

[9a] and [9b] makes clear that in this scenario the “short-run estimator” (the two-sample two-step 

estimator with short-run income variables) is a consistent estimator of the IGE of the expectation 

as long as the measurement-error assumptions 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝑇𝑇) = 0 and 𝐸𝐸(𝑃𝑃|𝑑𝑑) = 𝐸𝐸(𝑃𝑃) hold.  

Let’s consider next the case in which the instrument is invalid because A4 does not hold, 

but A3’ and A4’ do hold. Comparing now Equations [14], [14a] and [14b] with Equations [11], 

[11a] and [11b] shows that, under the same measurement-error assumptions, the short-run 

estimator is upward inconsistent with the invalid instruments typically available to mobility 

scholars. 

3.4. Transforming the two-sample two-step estimator into a two-sample GMM 

estimator 

In the one-sample context, and following the approach first advanced by Newey (1984), a 

two-step estimator—where the estimator in the second step is itself an M-estimator or a GMM 

estimator that depends on the first-step estimator—can be easily transformed into a two-equation 

GMM estimator (where the two equations are estimated simultaneously). To do so, the first-

                                                           
9 Equations [14], [14a] and [14b] assume that 𝐸𝐸(𝑍𝑍) = 1 and 𝐸𝐸(𝐸𝐸(ln 𝑆𝑆 |𝐷𝐷)) = 1. The former is true by hypothesis 
while the latter follows from 𝐸𝐸(ln 𝑆𝑆) = 1, which is true by hypothesis. 
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order conditions for the two equations are “stacked,” so that the first-order conditions for the full 

GMM problem reproduce the first-order conditions of the estimators employed in each step.  

There are two main advantages to using this approach. First, a two-equation GMM 

estimator only involves standard asymptotic inferential procedures, while a two-step estimator 

requires to account for the two-step nature of the estimation by using more complicated closed-

form asymptotic variance estimators or resampling methods. Second, transforming a two-step 

estimator into a GMM estimator ensures efficient estimation (see Wooldridge 2002:425 and ff. 

for more details). As efficiency is achieved by weighting instruments in an optimal way, in finite 

samples the two-step and GMM estimators will produce identical estimates when there is only 

one instrument but will generally produce somewhat different estimates when there are multiple 

instruments. 

 With a small modification, the same approach can be used to transform the two-sample 

two-step predictor-substitution estimator of the exponential regression model introduced above 

into a two-sample two-equation GMM estimator. Let’s estipulate that the “auxiliary equation” is 

the equation from the first step, and the “main equation” is the equation from the second step. 

Then a two-sample GMM estimator of the IGE of the expectation, where the moment conditions 

are products of instruments and “modified residuals,” is obtained as follows: (a) replace the 

missing information in each of the samples—the logarithm of parents’ income in the main 

sample, children’s income in the auxiliary sample—by any value, e.g., zero, (b) stack the data 

from the two samples into one sample, adding an indicator variable to identify the observations 

from the auxiliary sample, (c) define the modified residuals entering the moment conditions 

associated to the auxiliary equation as the usual residuals multiplied by the indicator variable, (d) 

define the modified residuals entering the moment conditions associated to the main equation as 
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the usual residuals multiplied by one minus the indicator variable, and (e) estimate the two-

equation model by GMM in the usual way.  

The key steps are (c) and (d). The modified residuals defined in those steps are equal to 

the usual residuals for the observations in the equation-dependent “relevant sample” but are 

always equal to zero—regardless of the value of the parameter vector—for the observations in 

the equation-dependent “irrelevant sample.” Therefore, estimation can proceed as in the one-

sample context. The resulting estimator is the GMM-E-TS estimator. 

3.5. Empirical evidence 

Mitnik (2017c) has offered empirical evidence strongly supporting the notion that 

estimates of the IGE of the expectation obtained with the GMM-E-TS estimator and the 

instruments typically available are upper-bound estimates. His results also show that instruments 

vary greatly with regards to the tightness of the upper bounds that they provide. For this reason, 

he suggested putting a good amount of effort into searching for “best invalid instruments” when 

using the GMM-E-TS estimator. This may involve looking for additional instruments beyond 

those typically employed by mobility researchers; using multiple instruments simultaneously, 

and possibly including interactions between them; and exploring the effects of alternative 

functional forms (e.g., entering an instrument in levels or in logarithms), as this has been shown 

to be very consequential in some contexts (Reiss 2016). 

3.6. Lifecycle biases 

Regardless of IGE concept and regardless of estimator, IGE estimates are susceptible to 

both left- and right-side lifecycle biases, i.e., biases that may result when the differences in short-

run incomes between children or between parents do not capture well the differences in their 

long-run incomes (see, e.g., Mazumder 2005). Since the mid-2000s, the literature has relied on 
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measurement-error models that allow for lifecycle biases and model their effects on estimates of 

the conventional IGE generated with the OLS and TSLS estimators (see Haider and Solon 2006; 

Mitnik 2017b; Nybom and Stuhler 2016). In three recent papers, Mitnik advanced functionally 

similar generalized error-in-variables models for the estimation of the IGE of the expectation 

with the PPML (Mitnik 2017a), GMM-IVP (Mitnik 2017b) and GMM-E-TS (Mitnik 2017c) 

estimators. All generalized error-in-variables models indicate that using short-run measures of 

economic status pertaining to specific ages should eliminate the bulk of lifecycle biases, while 

the empirical evidence available for both IGEs suggests that this should happen when parents’ 

and children’s income information is obtained close to age 40 (e.g.,Haider and Solon 2006; 

Nybom and Stuhler 2016; Mitnik 2017a, 2017b, and 2017c).  

To simplify the exposition, in this section I have assumed that estimates are always free 

of lifecycle biases. Although this is not true, all conclusions drawn above still follow when the 

generalized error-in-variables model that does take lifecycle biases into account (see Mitnik 

2017c) is substituted for the simpler measurement-model model I used, provided that both the 

children’s and the parents’ short-run income measures pertain to the “right points” of their 

lifecycles. So, as long as the children’s and the parents’ measures pertain to when they are close 

to 40 years old, lifecycle biases may be ignored, at least as a first approximation. 

 If this is not the case, however, those conclusions are unwarranted. This applies, in 

particular, to the conclusion that estimates of the IGE of the expectation based on the GMM-E-

TS estimator (and short-run income measures) are upward biased with the instruments typically 

available. This may not be the case if children’s income is measured when they are young 

enough and/or if parents’ income is measured when they are old enough; in these cases, the 

downward lifecycle biases that result may more than compensate for the upward bias associated 
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to the use of invalid instruments. Therefore, the simplified discussion of estimation biases in this 

paper can be used as reference as long as the short-run income measures pertain to the right ages 

of parents and children. If this is not the case, however, the more complicated analysis provided 

by Mitnik’s (2017c) generalized error-in-variables model, and the associated empirical evidence, 

should be consulted to determine—to the extent that this is possible—the likely direction of any 

(net) estimation bias. 

4. The igetwos command 

4.1 Syntax 

The syntax for the igetwos command is 

igetwos depvar [ varlist1 ] [ if ] [ in ] [ weight ], instruments(varlist2) sampaux(varname1)  

 depvaraux(varname2) [ options ] 

where varlist1 and varlist2 may contain factor variables and fweights, iweights, and pweights are 

allowed. 

4.2 Options 

Required options 

   instruments(varlist2) specifies the instruments 

   sampaux(varname1) specifies the name of an indicator variable identifying the observations 

from the auxiliary sample 

   depvaraux(varname2) specifies the name of the log-parental-income variable, which is the 

dependent variable in the auxiliary equation 
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GMM weight matrix options 

   wmatrix(wmtype) specifies the weight matrix type; weight matrix type wmtype may be robust 

(the default), cluster clustvar, or unadjusted; these types of matrices are as defined in 

the Stata manual entry for the gmm command 

   winitial(iwtype) specifies the initial weight matrix; initial weight matrix iwtype may 

be unadjusted, identity (the default), or the name of a Stata matrix; these types of 

matrices are as defined in the Stata manual entry for the gmm command 

SE/Robust options 

   vce(vcetype) specifies the type of standard error reported; vcetype may be robust, cluster 

clustvar, bootstrap, jackknife, or unadjusted; the default vcetype is based on the 

wmtype specified in the wmatrix() option; the types of standard errors, and the rules used 

to define the default vcetype, are as described in the Stata manual entry for the gmm 

command 

Other options 

   nostandardize requires that, when estimating the elasticity of the expectation, the dependent 

variable in the main equation not be standardized by dividing it by its mean in the main 

sample (which normally helps the model converge); the default is to standardize this 

variable 

   noinitvalues requires that initial values not be provided for GMM estimation; the default is to 

provide initial values 

   show requires that the results of the regressions used to generate initial values be shown; the 

default is not to show them 
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   technique(optalg) specifies the optimization technique to use; optalg may be nr, bfgs, dfp, gn 

(the default), or a combination of these algorithms, which are those used by the gmm 

command 

   othergmmoptions( ) can be used to specify any option allowed by the command gmm not 

listed above, as long as the option pertains to the interactive version of that command; for 

instance, specifying “othergmm(igmm igmmiterate(8) quickderivatives)" requires 

igetwos to use the iterative GMM estimator (doing up to 8 iterations), and to employ an 

alternative method of computing numerical derivatives for the variance-covariance  

matrix 

   geometricmean requires estimation of the elasticity of the conditional geometric mean; the 

default is to estimate the elasticity of the conditional expectation 

   altinitvalues requires that alternative initial values, pertaining to the two-step estimates of the 

elasticity of the conditional geometric mean, be provided for the GMM estimation of the 

elasticity of the conditional expectation; the default is to provide as initial values those 

pertaining to the two-step estimates of the elasticity of the conditional expectation 

4.3. Description and remarks 

The command igetwos estimates IGEs of children's income with respect to parental 

income in contexts in which (a) the measure of children's income (the dependent variable) is 

available in one sample (the main sample), the measure of parental income is available in a 

different sample (the auxiliary sample), and other parental variables that can be used as 

instruments (e.g., parental education, parental occupation) are available in both samples, and (b) 

the IGE is assumed to be constant across levels of parental income. By default, igetwos estimates 

the IGE of the conditional expectation of children's income, using the GMM-E-TS estimator 

introduced in Section 3. The command can also estimate the IGE of the conditional geometric 

20



 

mean of children's income, using a GMM version of the TSTSLS estimator, which requires 

specifying the option geometricmean; here the two-step procedure employed by the TSTSLS 

estimator is replaced by estimation of a two-equation model by GMM (relying on the approach 

described in Section 3.4 for the IGE of the expectation).  

   The program assumes that the names of variables used in estimation have been 

harmonized across samples, the auxiliary sample has been appended to the main sample, and 

there is an indicator variable, specified in sampaux(varname1), that is coded 0 for the 

observations in the main sample and 1 for the observations in the auxiliary sample. It also 

assumes that the dependent variable of the main equation, specified by depvar, is the children’s 

income when estimating the IGE of the expectation and the logarithm of their income when 

estimating the IGE of the geometric mean. In addition, the program assumes that depvar is coded 

as 0 (rather than missing) in the auxiliary sample, and that the dependent variable in the auxiliary 

equation, specified by option depvaraux(varname2), is coded as 0 (rather than missing) in the 

main sample. If this is not the case, the program exits with an error message. At least one 

instrument needs to be specified with the option instruments(varlist2). Control variables (e.g., a 

polynomial on children’s age), may be specified in varilist1 if desired. If one of the samples 

includes weights (e.g., population weights) and the other doesn't, weights equal to 1 need to be 

generated in the latter sample. Otherwise, the program will exit with an error message if 

weighted estimation is requested. 

The optimization algorithm employed sometimes makes a difference for whether the 

model converges or not, and for the time it takes to converge. If the model under estimation has 

difficulties converging, users should experiment with the various optimization algorithms 

available (and combinations thereof) by using the option technique( ). Combining 15 iterations 
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of the modified Newton–Raphson algorithm followed by 5 of the Davidon–Fletcher–Powell 

algorithm—i.e., specifying technique(nr 15 dfp 5)—has proven particularly useful in some 

cases. However, estimation with this combination may be much slower than with the default 

Gauss–Newton method, so it should only be used if needed.  

Specifying the option othergmm(igmm), which requests use of the iterative GMM 

estimator, may lead in some cases to estimates that are (non-negligibly) different. These 

estimates are likely to be more precise (Hall 2005: Sec. 2.4 and 3.6) than those obtained without 

that option. Specifying the option othergmm(igmm igmmiterate(#)), with # > 2 a small 

maximum number of iterations (e.g., # = 8), may be a good compromise if the iterative GMM 

estimator takes too long to converge.10 The iterative GMM estimator with a maximum of # > 2 

iterations can still be expected to be more efficient than the default (for which # = 2). The 

wmtype unadjusted and the vcetype unadjusted should in general not be used; they are allowed 

by igetwos mostly because they might serve a pedagogical purpose in some contexts.  

The option show displays the estimates generated by the two-step estimator on which the 

relevant GMM estimator is based. By default, igetwos uses these estimates as initial values for 

the latter. In addition, when estimating the IGE of the expectation, the dependent variable is 

divided by its mean in the main sample—which affects the intercept of the linear predictor but 

not the elasticity—as this often facilitates convergence. Both behaviors can be changed by 

specifying the options noinitvalues and nostandardize, respectively. When the option 

altinitvalues is specified the two-step estimates pertaining to the IGE of the geometric mean are 

used as initial values for the GMM estimation of the IGE of expected income. This may be 

                                                           
10 Moreover, there is no guarantee that the iterative GMM estimator will converge (e.g., Hall 2005:90). 
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useful in the very unlikely case that the two-step estimator of the IGE of the expectation has 

trouble converging.  

In addition to what is stored by gmm, igetwos stores a few macros in e( ), which are 

listed in the command’s help. The following standard postestimation commands are available: 

lincom, nlcom, test and nltest.   

5. Estimating IGEs in the two-sample context: Examples 

In this section I present examples of estimation of IGEs in the two-sample context, using 

the command igetwos and a subset of the data (from the Panel Study of Income Dynamics) 

employed by Mitnik (2017c). The “artificial two-sample” data I use represent U.S. men and 

women born between 1966 and 1974. The annual measure of parents’ family income pertains to 

when the average age of the parents was close to 40 years old, while the short-run measure of 

children’s income is an average of their family income when they were 35-38 years old.11 I 

mostly focus on the estimation of the IGE of the expectation with the TS-GMM-E estimator, but 

at the end I also present an example of estimation of the IGE of the geometric mean with the 

GMM version of the TSTSLS estimator.  

As required by igetwos, the names of the variables used in estimation are the same across 

samples, and the auxiliary sample has been appended to the main sample. The variables used in 

the examples are the following: 

c_inc             Child's family income 
c_ln_inc  Logarithm of child's family income  
p_ln_inc      Logarithm of parental income 
p_age                  Average parental age  
p_yeduc            Parents' total years of education 
f_occ              Father's occupation 
c_pweight         Sampling weights 
cluster   Cluster variable 

                                                           
11 Therefore, the income variables I use can be expected to generate very little lifecycle bias (see Section 3.6). 
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aux   Indicator variable identifying the auxiliary sample 

There is one more condition that the data must satisfy for use with igetwos: The 

children’s income variables need to be coded as zero (rather than missing) in the auxiliary 

sample, and the parental income variable needs to be coded as zero (rather than missing) in the 

main sample. I start by reading the data and doing the needed replacements: 

 

The command igetwos does not accept the survey prefix svy but does allow population 

weights, which need to be specified with the data at hand. It also allows to request a weight 

matrix that accounts for arbitrary correlation among observations within clusters, and that 

cluster-robust standard errors be computed, both of which are also needed here.12  In all cases I 

specify the option othergmm(nolog) to save space, but it’s better not to do so (to be able to 

examine the iteration log for potential convergence issues). 

In the first example I use parents’ years of education as instrument, producing an estimate 

of the IGE of expected income of 0.76. The command and the corresponding output are: 

                                                           
12 This is needed because of the relationship between the observations in the main and the auxiliary samples (see 
Mitnik 2017c:22).  
 

. qui replace p_ln_inc = 0 if aux == 0

. qui replace c_ln_inc = 0 if aux == 1

. qui replace c_inc = 0 if aux == 1

. use igetwos_data, clear
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Mobility scholars often include polynomials on parents’ or children’s age as controls, or 

specify different intercepts by gender or birth cohort. In the next example the auxiliary equation 

and the linear predictor of the main equation include a quadratic polynomial on parents’ age. As 

the model converges very slowly with the default algorithm, I specify the option technique(nr 

15 dfp 5). I also conduct a Wald test of the null hypothesis that all parental-age coefficients are 

zero. 

The dependent variable was standardized by dividing it by its mean in the main sample
Instruments for equation main: p_yeduc _cons
Instruments for equation aux: p_yeduc _cons
                                                                              
  /main_cons    -8.522528   1.078968    -7.90   0.000    -10.63727    -6.40779
   /main_ige     .7601429    .096159     7.91   0.000     .5716748     .948611
                                                                              
       _cons     9.249505   .1560973    59.25   0.000      8.94356     9.55545
     p_yeduc      .151169   .0118903    12.71   0.000     .1278644    .1744736
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              
                              (Std. Err. adjusted for 823 clusters in cluster)
GMM-E-TS estimator
Two-sample estimation of the intergenerational elasticity of the expectation

GMM weight matrix:     Cluster (cluster)
Initial weight matrix: Identity                   Number of obs   =      1,646
Number of moments    =   4
Number of parameters =   4

GMM estimation 

note: model is exactly identified

Final GMM criterion Q(b) =  7.53e-31

. igetwos c_inc [pw=c_pweight], instruments(p_yeduc) sampaux(aux) depvaraux(p_ln_inc) wmatrix (cluster cluster) othergmm(nolog)
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In all results tables produced by igetwos, the IGE of the expectation is identified by the 

term “ige.” However, as we can see by comparing the output from the first two examples, the 

structure of the table is different when the equations include additional right-hand variables, 

beyond those that are required, and when they don’t. In the last example the null hypothesis that 

all parental-age coefficients are zero is strongly rejected, while including parental-age controls 

increases the estimated IGE from 0.76 to 0.80.  

         Prob > chi2 =    0.0000
           chi2(  4) =   44.24

 ( 4)  [main_other]c.p_age#c.p_age = 0
 ( 3)  [main_other]p_age = 0
 ( 2)  [aux]c.p_age#c.p_age = 0
 ( 1)  [aux]p_age = 0

. test [aux]p_age [aux]c.p_age#c.p_age [main_other]p_age [main_other]c.p_age#c.p_age

The dependent variable was standardized by dividing it by its mean in the main sample
Instruments for equation main: p_yeduc p_age c.p_age#c.p_age _cons
Instruments for equation aux: p_yeduc p_age c.p_age#c.p_age _cons
                                                                                 
          _cons    -7.347712   1.204494    -6.10   0.000    -9.708477   -4.986948
                 
c.p_age#c.p_age      .000635   .0006781     0.94   0.349     -.000694    .0019641
                 
          p_age    -.0658816   .0593434    -1.11   0.267    -.1821926    .0504294
main_other       
                                                                                 
          _cons     .7979627   .1066729     7.48   0.000     .5888877    1.007038
main_ige         
                                                                                 
          _cons      4.64172   .7400395     6.27   0.000     3.191269    6.092171
        p_yeduc     .1394899   .0109218    12.77   0.000     .1180835    .1608963
                 
c.p_age#c.p_age    -.0023949   .0003756    -6.38   0.000     -.003131   -.0016588
                 
          p_age     .2168265   .0331215     6.55   0.000     .1519095    .2817436
aux              
                                                                                 
                       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                Robust
                                                                                 
                                 (Std. Err. adjusted for 823 clusters in cluster)
GMM-E-TS estimator
Two-sample estimation of the intergenerational elasticity of the expectation

GMM weight matrix:     Cluster (cluster)
Initial weight matrix: Identity                   Number of obs   =      1,646
Number of moments    =   8
Number of parameters =   8

GMM estimation 

note: model is exactly identified

Final GMM criterion Q(b) =  8.56e-31

> cluster) tech(nr 15 dfp 5) othergmm(nolog) 
. igetwos c_inc c.p_age c.p_age#c.p_age [pw=c_pweight], instruments(p_yeduc) sampaux(aux) depvaraux(p_ln_inc) wmatrix (cluster 
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In the above examples, the computation of cluster-robust standard errors is implied by the 

use of a weight matrix of the wmtype cluster. This is so because the default vcetype in igetwos is 

based on the wmtype specified in the wmatrix() option. Now, as the default wmtype is robust, 

the default vcetype is also robust. Therefore, had the data been the result of simple random 

sampling, estimation of the model in the first example could have been accomplished by the 

following command: 

 

that is, without having to specify robust standard errors (which are mandatory with the GMM- 
 
E-TS estimator). This command only includes the minimum information required by igetwos: 

The children’s income variable, one instrument, the indicator variable identifying the auxiliary 

sample, and the parents’ income variable (in logarithms).  

 In the following example I estimate a model in which both parents’ years of education 

and its square are used as instruments. In addition to the option technique(nr 15 dfp 5), I include 

in this case the options igmm igmmiterate(8) (as arguments for othergmm). This requires that 

the iterative GMM estimator rather than the default (two-step) GMM estimator be used, with a 

maximum of 8 iterations. When there is more than one instrument, use of the iterative GMM 

estimator is recommended unless it is too computationally expensive, as it is likely to improve 

precision in finite samples (e.g. Hall 2005:Sec. 2.4 and 3.6).13 The results follow, showing a 

larger IGE estimate than in the previous two examples: 

                                                           
13 When there is only one instrument the model is exactly identified, so requesting that the iterative GMM estimator 
be used would make no difference.  

. igetwos c_inc, instruments(p_yeduc) sampaux(aux) depvaraux(p_ln_inc)
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 In the last example of estimation of the IGE of the expectation I instrument the logarithm 

of parental income with father’s occupation:  

The dependent variable was standardized by dividing it by its mean in the main sample
Instruments for equation main: p_yeduc c.p_yeduc#c.p_yeduc _cons
Instruments for equation aux: p_yeduc c.p_yeduc#c.p_yeduc _cons
                                                                                     
         /main_cons    -9.427891   1.129275    -8.35   0.000    -11.64123   -7.214553
          /main_ige     .8392476   .1008401     8.32   0.000     .6416046    1.036891
                                                                                     
              _cons     8.575029   .4330422    19.80   0.000     7.726281    9.423776
                     
c.p_yeduc#c.p_yeduc    -.0045586   .0027657    -1.65   0.099    -.0099792    .0008621
                     
            p_yeduc     .2641736   .0691993     3.82   0.000     .1285455    .3998017
                                                                                     
                           Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                    Robust
                                                                                     
                                     (Std. Err. adjusted for 823 clusters in cluster)
GMM-E-TS estimator
Two-sample estimation of the intergenerational elasticity of the expectation

GMM weight matrix:     Cluster (cluster)
Initial weight matrix: Identity                   Number of obs   =      1,646
Number of moments    =   6
Number of parameters =   5

GMM estimation 

Final GMM criterion Q(b) =  .0018108

note: iterative GMM parameter vector converged

>  cluster) othergmm(igmm igmmiterate(8) nolog) tech(nr 15 dfp 5)
. igetwos c_inc [pw=c_pweight], instruments(c.p_yeduc c.p_yeduc#c.p_yeduc) sampaux(aux) depvaraux(p_ln_inc) wmatrix (cluster
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 As in the previous example with multiple instruments, here I requested that the iterative 

GMM estimator, with up to 8 iterations, be used (rather than the default GMM estimator, where 

the number of iterations is 2). Unlike in the previous example, however, in this case the GMM 

iterative estimator did not converge in 8 iterations, and this is noted in two places in the output: 

Indirectly at the top, where there is a note saying “maximum number of GMM iterations 

The dependent variable was standardized by dividing it by its mean in the main sample
Warning: convergence not achieved
    25.f_occ 999.f_occ _cons
    11.f_occ 13.f_occ 14.f_occ 15.f_occ 16.f_occ 17.f_occ 18.f_occ 19.f_occ 20.f_occ 21.f_occ 22.f_occ 23.f_occ 24.f_occ
Instruments for equation main: 0b.f_occ 1.f_occ 2.f_occ 3.f_occ 4.f_occ 5.f_occ 6.f_occ 7.f_occ 8.f_occ 9.f_occ 10.f_occ
    25.f_occ 999.f_occ _cons
    11.f_occ 13.f_occ 14.f_occ 15.f_occ 16.f_occ 17.f_occ 18.f_occ 19.f_occ 20.f_occ 21.f_occ 22.f_occ 23.f_occ 24.f_occ
Instruments for equation aux: 0b.f_occ 1.f_occ 2.f_occ 3.f_occ 4.f_occ 5.f_occ 6.f_occ 7.f_occ 8.f_occ 9.f_occ 10.f_occ
                                                                                                         
                             /main_cons    -7.910494   .9483669    -8.34   0.000    -9.769259   -6.051729
                              /main_ige     .7010749   .0851351     8.23   0.000     .5342131    .8679366
                                                                                                         
                                  _cons     10.62132   .2042851    51.99   0.000     10.22093    11.02172
                                         
                       DK; NA; refused      .1579864   .2281778     0.69   0.489    -.2892339    .6052067
         Military Specific Occupations      .0890247   .2589855     0.34   0.731    -.4185774    .5966269
     Transp. and Material Moving Occs.      .1863674   .2209405     0.84   0.399     -.246668    .6194027
                Production Occupations      .3118101   .2123924     1.47   0.142    -.1044712    .7280915
     Inst., Maint., and Repair Workers       .666307   .2197162     3.03   0.002     .2356712    1.096943
                    Extraction Workers     -.1082022   .2137761    -0.51   0.613    -.5271958    .3107913
                   Construction Trades      .3426118    .240438     1.42   0.154    -.1286379    .8138616
    Farming, Fish., and Forestry Occs.     -.0956289   .2945765    -0.32   0.745    -.6729883    .4817305
       Office and Admin. Support Occs.      .6616396   .2328086     2.84   0.004     .2053431    1.117936
                     Sales Occupations      .8022835   .2194434     3.66   0.000     .3721824    1.232385
       Personal Care and Service Occs.     -.7091729   .2726534    -2.60   0.009    -1.243564   -.1747821
       Build. and Grounds Maint. Occs.      .4490451   .2706515     1.66   0.097    -.0814222    .9795123
    Food Prep. and Serving Occupations     -.5133608   .2324357    -2.21   0.027    -.9689264   -.0577952
        Protective Service Occupations      .4813879    .230227     2.09   0.037     .0301512    .9326246
     Healthcare Pract. and Tech. Occs.      1.600948   .3486855     4.59   0.000     .9175367    2.284359
Arts, Entert., Sports, and Media Occs.       .925338   .2440441     3.79   0.000     .4470203    1.403656
    Education, Train., and Libr. Occs.      .8108536   .2153782     3.76   0.000     .3887202    1.232987
                     Legal Occupations      .9639085   .2043673     4.72   0.000     .5633559    1.364461
     Community and Social Servs. Occs.      .5672572   .2139008     2.65   0.008     .1480194    .9864951
    Life, Physical, and Soc. Sc. Occs.      .9000847    .236265     3.81   0.000     .4370139    1.363155
    Architecture and Engineering Occs.      .8612367   .2213648     3.89   0.000     .4273697    1.295104
 Computer and Mathematical Occupations      .9332384   .2413502     3.87   0.000     .4602007    1.406276
                 Financial Specialists      .9509485   .2331198     4.08   0.000     .4940421    1.407855
       Business Operations Specialists      .4077496   .2318577     1.76   0.079    -.0466831    .8621823
                Management Occupations      .8471031   .2279306     3.72   0.000     .4003674    1.293839
                                  f_occ  
                                                                                                         
                                               Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                        Robust
                                                                                                         
                                                         (Std. Err. adjusted for 823 clusters in cluster)
GMM-E-TS estimator
Two-sample estimation of the intergenerational elasticity of the expectation

GMM weight matrix:     Cluster (cluster)
Initial weight matrix: Identity                   Number of obs   =      1,646
Number of moments    =  52
Number of parameters =  28

GMM estimation 

Final GMM criterion Q(b) =  .0086305

note: maximum number of GMM iterations reached

>  igmmiterate(8) nolog)
. igetwos c_inc [pw=c_pweight], instruments(i.f_occ) sampaux(aux) depvaraux(p_ln_inc) wmatrix (cluster cluster) othergmm(igmm
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reached,” and directly at the bottom, where there is a warning saying “convergence not 

achieved.” This is fully unproblematic. Like the default estimator, any GMM iterative estimator 

based on # > 2 iterations is consistent; moreover, as already indicated, it is likely more efficient 

that the default estimator in finite samples.  

As I am using data that are “artificially two-sample,” and the original data include a 

measure of long-run parental income, the long-run IGE of the expectation can be estimated with 

the PPML estimator. This estimate is 0.60 (Mitnik 2017b: Table 3). Examining the results 

obtained in this section, we see that, as expected (a) all IGE estimates produced by the GMM-E-

TS estimator are upper-bound estimates, and (b) there is substantial variation across instruments, 

i.e., while the estimate using father’s occupation as instrument is 0.70, those obtained by using 

parents’ years of education, alone and as second degree polynomial (0.76 and 0.84, respectively), 

provide looser upper bounds.  

I finish the section with an example of estimation of the conventional IGE, in which I use 

parents’ years of education as instrument. Estimation of the conventional IGE is achieved by 

substituting the logarithm of children’s income for children’s income as outcome variable, and 

specifying the option geometricmean. I also specify the option show, just to show that, with a 

single instrument, igetwos reproduces the point estimate obtained with the TSTSLS estimator. 
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The estimate of 0.91 is larger than the log-run estimate of the conventional IGE obtained with 

the underlying data and the OLS estimator, which puts that IGE at 0.70 (Mitnik 2017b: Table 3). 

Instruments for equation main: p_yeduc _cons
Instruments for equation aux: p_yeduc _cons
                                                                              
  /main_cons     1.060185   1.221688     0.87   0.386    -1.334279    3.454649
/main_ige_gm     .9117561   .1087229     8.39   0.000     .6986632    1.124849
                                                                              
       _cons     9.249505   .1560973    59.25   0.000      8.94356     9.55545
     p_yeduc      .151169   .0118903    12.71   0.000     .1278644    .1744736
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              
                              (Std. Err. adjusted for 823 clusters in cluster)
GMM version of the TSTSLS estimator
Two-sample estimation of the intergenerational elasticity of the geometric mean

GMM weight matrix:     Cluster (cluster)
Initial weight matrix: Identity                   Number of obs   =      1,644
Number of moments    =   4
Number of parameters =   4

GMM estimation 

note: model is exactly identified

Final GMM criterion Q(b) =  1.20e-31

Joint estimation by GMM

                                                                              
       _cons     1.060185   1.180002     0.90   0.369    -1.255999    3.376369
p_ln_inc_hat     .9117561   .1050486     8.68   0.000     .7055599    1.117952
                                                                              
    c_ln_inc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                Root MSE          =     .77855
                                                R-squared         =     0.1325
                                                Prob > F          =     0.0000
                                                F(1, 819)         =      75.33
Linear regression                               Number of obs     =        821

(sum of wgt is   3.1455e+04)
Second-step regression

                                                                              
       _cons     9.249505   .1562873    59.18   0.000     8.942735    9.556275
     p_yeduc      .151169   .0119048    12.70   0.000     .1278015    .1745364
                                                                              
    p_ln_inc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                Root MSE          =     .66842
                                                R-squared         =     0.1996
                                                Prob > F          =     0.0000
                                                F(1, 821)         =     161.24
Linear regression                               Number of obs     =        823

(sum of wgt is   3.1493e+04)
First-step regression

Generating initial values

> cmean show othergmm(nolog)
. igetwos c_ln_inc [pw = c_pweight], instruments(p_yeduc) sampaux(aux) depvaraux(p_ln_inc) wmatrix (cluster cluster) geometri
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This is in agreement with the standard approach in the literature, which treats TSTSLS estimates 

as upper-bound estimates.  

6. Concluding remarks 

I have introduced the user-written program igetwos, which estimates IGEs in the two-

sample context. Together, the already available commands poisson and ivpoisson and the new 

command igetwos offer a full suite of estimators of the IGE of the expectation. Using these 

estimators, it is possible to use Stata to easily estimate this IGE in all situations in which the IGE 

of the geometric mean has been estimated by mobility scholars. The first two commands 

implement the PPML and GMM-IVP estimators and may be used to estimate the IGE of the 

expectation with any dataset that may be used to estimate the conventional IGE with the OLS 

and TSLS estimators, respectively. Similarly, the new command introduced here may be used to 

estimate the IGE of the expectation with any pair of datasets that may be used to estimate the 

conventional IGE with the TSTSLS estimator. Given that the diffusion of statistical advances is 

closely tied to their embodiment in statistical software (Koenker and Hallock, 2001:153), and 

that Stata is extensively used by mobility scholars, I hope that igetwos will make a significant 

contribution to the replacement of the conventionally estimated IGE by the IGE of the expected 

income as the workhorse intergenerational elasticity.   
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