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Abstract

Due to data constraints, the intergenerational income elasticity (IGE)—the workhorse measure of
economic mobility—has very often been estimated with short-run income measures drawn from
two independent samples and using the Two-Sample Two-Stage Least Squares (TSTSLS)
estimator. The IGE conventionally estimated in the mobility literature, however, has been widely
misinterpreted as pertaining to the conditional expectation of children’s income when in fact it
pertains to its conditional geometric mean. In line with recent work, this article focuses almost
exclusively on the IGE of expected income. It (a) proposes that estimation of this IGE in the two-
sample context be based on a recently advanced two-sample generalized method of moments
(GMM) estimator of the exponential regression model, and (b) introduces the user-written
program igetwos, which implements that estimator as well as a GMM version of the TSTSLS
estimator. The new program allows to use Stata to estimate both the IGE of the expectation and
the IGE of the geometric mean when the income information for parents and children is available

in two independent samples.

Keywords: intergenerational income elasticity, economic mobility, elasticity of the expectation,
exponential regression model, instrumental variables, generalized method of moments, two-

sample estimation, two-sample two-stage least squares estimator.



1. Introduction

The intergenerational elasticity (IGE) is the workhorse measure of intergenerational
economic mobility. It has been widely estimated over the last four decades, very often with the
goal of providing a summary assessment of the level of income or earnings mobility within a
country (for reviews, see Solon 1999:1778-1788; Corak 2006; Jantti and Jenkins 2015:Secs.
10.5.2 and 10.5.3). Beyond this elementary goal, the IGE has been used, among other purposes,
to conduct comparative analyses of economic mobility and persistence across countries, regions,
demographic groups, cohorts, and time periods (e.g., Chadwick and Solon 2002; Hertz 2005,
2007; Aaronson and Mazumder 2008; Bjorklund and Jantti 2000; Mayer and Lopoo 2008;
Bloome and Western 2011); to examine the relationship between cross-sectional economic
inequality and mobility across generations (e.g., Corak 2013; Bloome 2015); and to study the
impact of social policies and political institutions on inequality of opportunity (e.g., Bratsberg et
al. 2007; Landersg and Heckman 2016).

Now, despite the IGE’s centrality in the intergenerational-mobility field, Mitnik and
Grusky (2017) have recently shown that this elasticity has been widely misinterpreted. Indeed,
the IGE has been construed as pertaining to the expectation of children’s income conditional on
their parents’ income—as apparent, for instance, in its oft-invoked interpretation as a measure of
regression to the (arithmetic) mean. However, the IGE estimated in the literature pertains to the
conditional geometric mean of the children’s income. As explained later, this not only makes all
conventional interpretations of the IGE invalid but also has very deleterious methodological
consequences.

Mitnik and Grusky (2017) have argued that both the conceptual and the methodological

problems can be solved in a straightforward manner by simply replacing the IGE of the



geometric mean (the de facto estimated IGE) by the IGE of the expectation (the IGE that
mobility scholars thought they were estimating) as the workhorse intergenerational elasticity.
They also called for effectuating such replacement, which requires identifying appropriate
estimators and, when necessary, making them available in the statistical packages most
frequently employed by mobility scholars.

As shown in recent work that has estimated the IGE of the expectation (Mitnik and
Grusky 2017; Mitnik 2017a, 2017b and 2017c; Mitnik et al. 2015), if income information for
both parents and children is included in the same sample, estimation of this IGE may be based on
(a) the Poisson Pseudo Maximum Likelihood (PPML) estimator (Santos Silva and Tenreyro
2006), and (b) the additive-error version of the Generalized Method of Moments (GMM)
instrumental variables (1) estimator of the Poisson or exponential regression model (Mullahy
1997; Windmeijer and Santos Silva 1997), or GMM-IVP estimator for short. The PPML
estimator may be used to estimate the IGE of expected income in any context in which the
Ordinary Least Squares estimator has been or may be used to estimate the conventional IGE
(Mitnik 2017a); similarly, the GMM-IVP estimator may be used to estimate the former IGE in
any context in which the Two-Stage Least-Squares (or other linear IV estimators) have been or
may be used to estimate the latter IGE (Mitnik 2017b). Both the PPML and the GMM-1VP
estimators are available in Stata. The PPML estimator is available with several commands,
including the command poisson. The GMM-IVP estimator is available with the command
ivpoisson. Mitnik (2017d) provides a detailed tutorial for how to use these commands to
estimate the IGE of expected income in Stata.

Unfortunately, relatively few countries count with samples in which the incomes of

parents and their children are both measured in some period during adulthood. For this reason,



the conventional IGE has very often been estimated not just with annual and other short-run
proxy income measures but with short-run income measures drawn from two independent
samples and using the Two-Sample Two-Stage Least Squares (TSTSLS) estimator (Jerrim et al.
2016). In order to make possible the estimation of the IGE of expected income when information
is available in two independent samples, Mitnik (2007c) advanced a two-sample GMM estimator
of the exponential regression model, to which I will refer as the GMM-E-TS estimator, as well as
an associated generalized error-in-variables model. The GMM-E-TS estimator may be used to
estimate the IGE of expected income in any context in which the TSTSLS estimator has been or
may be used to estimate the conventional IGE.

In this article | introduce the user-written program igetwos, which implements the GMM-
E-TS estimator in Stata and thus allows to easily estimate the IGE of the expectation with
information from independent samples. This new program also implements a two-equation
GMM version of the TSTSLS estimator. Although point estimates of the conventional IGE are
straightforward to obtain with the TSTSLS estimator using available Stata commands (e.g.,
regress), conducting statistical inference requires accounting for the two-step nature of the
estimation by using resampling approaches or complicated closed-form asymptotic variance
estimators (see Inoue and Solon 2010) that are not available with any Stata command. This
problem is solved by igetwos, which relies on standard asymptotic inferential procedures. In
addition, while the TSTSLS estimator is not efficient when implemented with more than one
instrument, its GMM counterpart is efficient regardless of the number of instruments.

The structure of the rest of the paper is as follows. | first explain why the conventional
IGE pertains to the conditional geometric mean of children’s income rather than to its

conditional expectation, as well as Mitnik and Grusky’s (2017) proposal to redefine the IGE used



as the workhorse measure of economic mobility. Next, | introduce the GMM-E-TS estimator,
and discuss its key properties when employed to estimate the IGE of expected income with long-
run and with short-run proxy income variables, and with valid and invalid instruments. This
discussion also includes some information regarding the “lifecycle biases” that may affect the
estimation of IGEs. After that I present the command igetwos, and explain how to use it to
estimate IGEs in the two-sample context. The last section offers brief concluding comments.
2. The IGE of what? Redefining the workhorse intergenerational elasticity

As | already indicated, the conventionally estimated IGE has been widely misinterpreted.
While mobility scholars have interpreted it as the elasticity of the expectation of children’s
income or earnings conditional on parental income, that IGE pertains in fact to the conditional
geometric mean. Closely following Mitnik and Grusky’s (2017) analysis, the standard population
regression function (PRF) posited in the literature, which assumes the elasticity is constant across
levels of parental income, is:

E(InY |x) = By + B1Inx, [1]

where Y is the child’s long-run income or earnings, X is long-run parental income or father’s
earnings, B; is the IGE as specified in the literature, and I use expressions like “Z|w” as a
shorthand for "Z|W = w.” The parameter S, is not, in the general case, the elasticity of the
conditional expectation of the child’s income. This would hold as a general result only if
E(InY|x) = In E(Y]x). But, due to Jensen’s inequality, the latter is not the case. Instead, as
E(InY |x) =Inexp E(InY |x),and GM(Y|x) = exp E(InY |x), Equation [1] is equivalent to

InGM(Y|x) =By + B1Inx, [2]



where GM denotes the geometric mean operator. Therefore, S, is the elasticity of the conditional
geometric mean, i.e., the percentage differential in the geometric mean of children’s long-run
income with respect to a marginal percentage differential in parental long-run income.!

As the geometric mean is undefined whenever an income distribution includes zero in its
support, the IGE is undefined as well when this is the case. Mitnik and Grusky (2017:Section 1V)
have argued that this has serious methodological consequences: It (a) makes it impossible to
determine the extent to which parental economic advantages are transmitted through the labor
market among women (as many women have zero earnings), and (b) greatly hinders research on
the role that marriage plays in generating the observed levels of intergenerational persistence in
family income (as many people remain single or have nonworking spouses, and therefore cannot
be included in analyses examining the relationship between people’s parental income and the
income contributed by their spouses). As a result, the study of gender and marriage dynamics in
intergenerational processes has been badly hampered. Equally important, Mitnik and Grusky
(2017:Section 111) have shown that, as a consequence of mobility scholars’ expedient of dropping
children with zero earnings from samples (to address what is perceived as the problem of the
logarithm of zero being undefined), estimation of earnings IGEs with short-run proxy earnings
measures is affected by substantial selection biases. This makes the current use of the IGE of
men’s individual earnings as an index of economic persistence and mobility in a country a rather
problematic practice.?

To address these problems, Mitnik and Grusky (2017) have called for redefining the

workhorse measure of economic mobility. This entails replacing the PRF of Equation [1] by a

! The parameter p; is (also) the IGE of the expectation only when the error term satisfies very special conditions
(Santos Silva and Tenreyro 2006; Petersen 2017; Wooldridge 2002:17).

2 Importantly, the methodological problems discussed in this paragraph can’t be solved by replacing zeros by “small
values” (Mitnik and Grusky, 2017:15-16).



PRF whose estimation delivers estimates of the IGE of the expectation in the general case. Under

the assumption of constant elasticity, that PRF can be written as:

InE(Y|x) =ay+ a;Inx, [3]
dInE(Y|x) . . A .
whereY > 0,X >0and a; = — e s the percentage differential in the expectation of

children’s long-run income with respect to a marginal percentage differential in parental long-run
income. Crucially, (a) all interpretations incorrectly applied to the conventional IGE are correct
or approximately correct under this formulation (see Mitnik and Grusky 2017:Section V.A), and
(b) the IGE of the expectation is fully immune to the methodological problems affecting the IGE
of the geometric mean and, in particular, is very well suited for studying the role of marriage in
the intergenerational transmission of advantage (see Mitnik and Grusky 2017:Section V.B for

details; and Mitnik et al. 2015:64-68 for an empirical application).
3. Estimation of the IGE of the expectation in the two-sample context

As I noted earlier, the conventional IGE has very often been estimated not just with
annual and other short-run proxy income measures, but with short-run income measures drawn
from two independent samples and using the TSTSLS estimator. The main concern with this
strategy has been that the instruments typically available (e.g., parental education and
occupation) are most likely positively correlated with both the logarithm of short-run parental
income and the error term in the PRF of interest, making them endogenous.® When this is the
case, estimates may still be useful if the sign of their asymptotic bias can be established. The
standard interpretation in the literature has been that TSTSLS estimates are useful as upper-

bound estimates. However, the available justification for this interpretation falls short, as it

3 This has been a concern with the IV estimation of the conventional IGE more generally, regardless of whether it is
estimated in the one-sample or in the two-sample context (Solon 1992; Mitnik 2017b; Jerrim et al. 2016).



counterfactually assumes that mobility scholars have long-run income variables in their samples
(Jerrim et al. 2016), which is essentially never the case. A fully-correct analysis needs to take
into account that estimation is based on short-run proxy measures, i.e., that there is measurement
error. This applies equally to the conventional IGE and to the IGE of the expectation.

The two-sample GMM estimator of the exponential regression model advanced by
Mitnik (2017c) is based on a two-sample two-step estimator. | present this estimator next. I first
assume that the income variables are measured without error, and then introduce measurement
error into the analysis. This is followed by a description of the approach for transforming the
two-sample two-step estimator into a GMM estimator, a brief summary of what is known about
the empirical performance of the estimator, and some comments regarding lifecycle biases.

3.1. The two-sample two-step estimator with a valid instrument

In the two-sample context, the “main sample” has the children’s income information, the
“auxiliary sample” has the parents’ income information, and both samples have a common set of
variables (e.g., parents’ education, father’s occupation) that may be used as instruments or
predictors for the parents’ income information. Operationally, the two-sample two-step estimator
simply extends the approach used by the TSTSLS estimator of the linear regression model to the
estimation of the exponential regression model. Thus, when there is only one instrumented
variable (a) the first step estimates a linear projection of that variable on the instruments and any
other right-side variables included in the second step, using information from the auxiliary
sample, and (b) the second step estimates the exponential regression model of interest using the
PPML estimator and the main sample, with the instrumented variable replaced by its predicted

values (which are computed with the parameters estimated in the first step).



I specify in this subsection the assumptions under which this two-sample two-step
estimator of the exponential regression model is consistent or approximately consistent when all
income variables are measured without error.* Without any loss of generality, | assume in what
follows that E(Y) = E(InX) = 1.5

Rewriting Equation [3] in additive-error form, the PRF of interest is

Y =exp(ag + a;InX) + ¥, [4]
where E(W¥|x) = 0. Assuming for simplicity that there is only one quantitative instrument
denoted by T (e.qg., years of parental education), the fist-step equation is the following population
linear projection:
InX =y, +y,T +R. [5]
Consider now the following assumptions, which apply to all t when relevant:
Al. E(R|t) =0
A2.Vc > 0,E(exp(cR)|t) = E(exp(cR))
A2' . Var(R|t) = Var(R)
A3. 7, #0
A4. E(P|t) = E(¥P).
Assumptions Al and A3 entail that the expectation of the logarithm of parental income
conditional on the value of T is a linear function of that value, while assumptions A3 and A4
entail that T is a valid instrument. Assumption A2 is similar to the standard assumption made for

the estimation of Poisson models with unobserved heterogeneity (see, e.g., Winkelmann 2008).

4 Tersa et al. (2008) have shown that, in the nonlinear context, “predictor-substitution IV estimators” are not
consistent in the general case.

5 This involves no loss of generality because it can always be achieved by simply changing the monetary units used
to measure income.



Assumption A2’, which posits that the error in the first-step equation is homoscedastic, provides
an alternative to A2. Although A2’ is not strictly weaker than A2 (neither assumption entails the
other), the fact that the dependent variable in the first-step equation is the logarithm of an income
variable may make A2’ more attractive than A2,
| start by showing that under assumptions Al, A2, A3 and A4 the two-sample estimator
of a; is consistent. Substituting Equation [5] into Equation [4], and using Al and A3, yields:
Y =exp(ag + E(InX|T) + a,R) + ¥
E(Y|t) = exp(ozO + a;E(InX It)) E(exp(a; R)|t) + E(W|t). [6]
Using now A2, Equation [6] reduces to:
E(Y|t) = exp(a) + a;E(InX [t)) + E(P|D), [7]
where ay = ay + In E(exp(a;R); and it further reduces to
E(Y|t) = exp(a(’) + a;E(InX It)) [8]
if assumption A4 also holds, that is, if the instrument is valid.® If the variable E(In X |T) were
available in the estimation sample, Equation [8] would be consistently estimated by the PPML
estimator (e.g., Santos Silva and Tenreyro 2006). Under a standard identification condition for
two-step M-estimators (e.g., Wooldridge 2002:354), the PPML estimator that replaces
E(In X |T) by consistent estimates obtained in the first step, is also consistent.
Going back to Equation [6], an alternative justification for this estimator as
“approximately consistent” can be obtained by replacing A2 by A2’. Indeed, it can be shown

(Mitnik 2017c:11) that this yields:

E(Y|t) = exp(af + ;,E(In X [t)) + E(¥]0), [7']

5 E(Y|t) = 0 follows from E(¥|x) = 0 (see Equation [4]) and assumption A4.
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where af = ay +In(1 + 0.5 [a;]? Var(R)). Here | focus on the first justification, as both lead
to pragmatically equivalent conclusions.
Resorting to Taylor-series expansions, Mitnik (2017a:16) has advanced an approximated

closed form expression for a; in a PRF like [8]. For future reference, I note that it yields:

& = Cyy — [(Cay)” - Val]%, [9]
where

Vo, =2 [Var(E(nx )] [9a]

Ca, = [Cov(Y,E(INX |T))]7L.7 [9b]

3.2. The two-sample two-step estimator with an invalid instrument
Let’s now assume that estimation is not based on the valid instrument T but on the
invalid instrument T, and that although A4 does not hold it is the case that:
A3 .y, >0
A4'. Cov(¥Y,T) > 0.
(Throughout I use bold font to indicate that a parameter, expression or variable pertains to the
analysis with the invalid instrument.) As y4 > 0 if and only if In X and T are positively
correlated, in the “long-run context” A3’ and A4’ are equivalent to the standard assumption that
the (invalid) instruments typically available to mobility scholars are positively correlated with
the logarithm of parental income and with the error term of the PRF of interest.
To determine the implications of A3’ and A4’, it is useful to rewrite the counterpart to

Equation [7] as follows:

" Equations [9], [9a] and [9b] assume E(Y) = 1, which is true by hypothesis, and E(E(In X |T)) = 1. The latter
follows from E(In X) = 1, which is true by hypothesis.
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E(Y|t) = exp(ap + a,E(n X [t)) [10]
where Y =Y — E(W|T). Now, making use again of the approximated closed-form expression

introduced above, we may write:

1
2

ay = C,, — [(Ca1)2 ~ Vo]’ [11]
where
Ve, =2 [Var(E(nx |T))] [11a]

Cy, = [Cov(Y,E(InX |T))]™

= [Cov(Y,E(nX |T)) — y1Cov(W,T)] .8  [11b]

Actual estimation, however, is not based on Y but on Y, which is equivalent to making

¥1Cov(¥,T) = 0. As assumptions A3’ and A4’ entail that v, Cov(¥,T) > 0, and _aacal <0

ay

(Mitnik 2017a:16), it follows that the probability limit of the two-sample two-step estimator of
the IGE of the expectation with the invalid instruments typically available to mobility scholars is
larger than the true parameter. This is the same conclusion that is obtained for the conventional
IGE when the latter is estimated with the TSTSLS estimator, also under the assumption that the
samples have information on long-run rather than short-run income.
3.3. Two-sample two-step estimation of the IGE of the expectation with short-run
income variables

Let Z > 0 be the children’s short-run income and S > 0 be the parents’ short-run income.

Without any loss of generality, | assume that E(Z) = E(S) = 1. And, just to simplify the

8 Equations [11], [11a] and [11b] assume that E(Y) = 1 and that E(E(In X |T)) = 1. This follows immediately from
E(Y) = 1and E(InX) = 1, which are true by hypothesis. In deriving [11b] | applied the law of total covariance. See
Mitnik(2017c:12) for the step-by-step derivation.
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exposition, I ignore here the possible existence of lifecycle biases, which the generalized error-
in-variables model advanced by Mitnik (2017c) does consider (more on this in subsection 3.6).
The first-step equation is now the population linear projection
InS=79,+7D+0,
where D is a generic instrument, i.e., an instrument that may or may not be valid.

Given that lifecycle biases have been ruled out, the short-run income measures can be

expressed as:

Z=Y+W [12]

S=X+P. [13]

FromE(Y) = E(X) = E(Z) = E(S) = 1, it follows that E(W) = E(P) = 0. Let’s now make

the following measurement-error assumptions:
M1.Cov(W,D) =0
M2.E(P|d) = E(P).
It is easy to show that when these measurement-error assumptions hold (a) assumption Al entails
E(Q|d) = 0, and (b) each of assumptions A3 and A3’ entails y; # 0.
Therefore, under Al, M1 and M2, the second-step equation may be written as:
E(Z|d) = exp(&@y + @&, E(In S |d)).

Then, using again the approximated closed-form expression employed before, we have:
1

& = Ca, — [(Cay)” = Va, | [14]

where
=2 [Var(E(lnS ID))]_1

= 2 [Var(E(InX|D) + E(P|D))]™*

13



=2 [Var(E(InX|D))] 1. [14a]
Ca, = [Cov(Z,E(lnS |D))]_1
= [Cov(Y,E(In X |D)) + Cov(Y, E(P|D)) + 7, Cov(W, D)] "
= [Cov(Y,E(InX|D))]™ 1.9 [14b]
So let’s assume that Equations Al, A2, A3 and A4 hold, that is, let’s consider the case in
which the instrument is valid. Comparing Equations [14], [14a] and [14b] with Equations [9],
[9a] and [9b] makes clear that in this scenario the “short-run estimator” (the two-sample two-step
estimator with short-run income variables) is a consistent estimator of the IGE of the expectation
as long as the measurement-error assumptions Cov(W,T) = 0 and E(P|d) = E(P) hold.
Let’s consider next the case in which the instrument is invalid because A4 does not hold,
but A3” and A4’ do hold. Comparing now Equations [14], [14a] and [14b] with Equations [11],
[11a] and [11b] shows that, under the same measurement-error assumptions, the short-run
estimator is upward inconsistent with the invalid instruments typically available to mobility
scholars.

3.4. Transforming the two-sample two-step estimator into a two-sample GMM

estimator

In the one-sample context, and following the approach first advanced by Newey (1984), a
two-step estimator—where the estimator in the second step is itself an M-estimator or a GMM
estimator that depends on the first-step estimator—can be easily transformed into a two-equation

GMM estimator (where the two equations are estimated simultaneously). To do so, the first-

® Equations [14], [14a] and [14b] assume that E(Z) = 1 and E(E(In S |D)) = 1. The former is true by hypothesis
while the latter follows from E (In S) = 1, which is true by hypothesis.
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order conditions for the two equations are “stacked,” so that the first-order conditions for the full
GMM problem reproduce the first-order conditions of the estimators employed in each step.

There are two main advantages to using this approach. First, a two-equation GMM
estimator only involves standard asymptotic inferential procedures, while a two-step estimator
requires to account for the two-step nature of the estimation by using more complicated closed-
form asymptotic variance estimators or resampling methods. Second, transforming a two-step
estimator into a GMM estimator ensures efficient estimation (see Wooldridge 2002:425 and ff.
for more details). As efficiency is achieved by weighting instruments in an optimal way, in finite
samples the two-step and GMM estimators will produce identical estimates when there is only
one instrument but will generally produce somewhat different estimates when there are multiple
instruments.

With a small modification, the same approach can be used to transform the two-sample
two-step predictor-substitution estimator of the exponential regression model introduced above
into a two-sample two-equation GMM estimator. Let’s estipulate that the “auxiliary equation” is
the equation from the first step, and the “main equation” is the equation from the second step.
Then a two-sample GMM estimator of the IGE of the expectation, where the moment conditions
are products of instruments and “modified residuals,” is obtained as follows: (a) replace the
missing information in each of the samples—the logarithm of parents’ income in the main
sample, children’s income in the auxiliary sample—by any value, e.g., zero, (b) stack the data
from the two samples into one sample, adding an indicator variable to identify the observations
from the auxiliary sample, (c) define the modified residuals entering the moment conditions
associated to the auxiliary equation as the usual residuals multiplied by the indicator variable, (d)

define the modified residuals entering the moment conditions associated to the main equation as

15



the usual residuals multiplied by one minus the indicator variable, and (e) estimate the two-
equation model by GMM in the usual way.

The key steps are (c) and (d). The modified residuals defined in those steps are equal to
the usual residuals for the observations in the equation-dependent “relevant sample” but are
always equal to zero—regardless of the value of the parameter vector—for the observations in
the equation-dependent “irrelevant sample.” Therefore, estimation can proceed as in the one-
sample context. The resulting estimator is the GMM-E-TS estimator.

3.5. Empirical evidence

Mitnik (2017c) has offered empirical evidence strongly supporting the notion that
estimates of the IGE of the expectation obtained with the GMM-E-TS estimator and the
instruments typically available are upper-bound estimates. His results also show that instruments
vary greatly with regards to the tightness of the upper bounds that they provide. For this reason,
he suggested putting a good amount of effort into searching for “best invalid instruments” when
using the GMM-E-TS estimator. This may involve looking for additional instruments beyond
those typically employed by mobility researchers; using multiple instruments simultaneously,
and possibly including interactions between them; and exploring the effects of alternative
functional forms (e.g., entering an instrument in levels or in logarithms), as this has been shown
to be very consequential in some contexts (Reiss 2016).

3.6. Lifecycle biases

Regardless of IGE concept and regardless of estimator, IGE estimates are susceptible to
both left- and right-side lifecycle biases, i.e., biases that may result when the differences in short-
run incomes between children or between parents do not capture well the differences in their

long-run incomes (see, e.g., Mazumder 2005). Since the mid-2000s, the literature has relied on
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measurement-error models that allow for lifecycle biases and model their effects on estimates of
the conventional IGE generated with the OLS and TSLS estimators (see Haider and Solon 2006;
Mitnik 2017b; Nybom and Stuhler 2016). In three recent papers, Mitnik advanced functionally
similar generalized error-in-variables models for the estimation of the IGE of the expectation
with the PPML (Mitnik 2017a), GMM-IVP (Mitnik 2017b) and GMM-E-TS (Mitnik 2017c)
estimators. All generalized error-in-variables models indicate that using short-run measures of
economic status pertaining to specific ages should eliminate the bulk of lifecycle biases, while
the empirical evidence available for both IGEs suggests that this should happen when parents’
and children’s income information is obtained close to age 40 (e.g.,Haider and Solon 2006;
Nybom and Stuhler 2016; Mitnik 2017a, 2017b, and 2017c).

To simplify the exposition, in this section | have assumed that estimates are always free
of lifecycle biases. Although this is not true, all conclusions drawn above still follow when the
generalized error-in-variables model that does take lifecycle biases into account (see Mitnik
2017c) is substituted for the simpler measurement-model model | used, provided that both the
children’s and the parents’ short-run income measures pertain to the “right points” of their
lifecycles. So, as long as the children’s and the parents’ measures pertain to when they are close
to 40 years old, lifecycle biases may be ignored, at least as a first approximation.

If this is not the case, however, those conclusions are unwarranted. This applies, in
particular, to the conclusion that estimates of the IGE of the expectation based on the GMM-E-
TS estimator (and short-run income measures) are upward biased with the instruments typically
available. This may not be the case if children’s income is measured when they are young
enough and/or if parents’ income is measured when they are old enough; in these cases, the

downward lifecycle biases that result may more than compensate for the upward bias associated
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to the use of invalid instruments. Therefore, the simplified discussion of estimation biases in this
paper can be used as reference as long as the short-run income measures pertain to the right ages
of parents and children. If this is not the case, however, the more complicated analysis provided

by Mitnik’s (2017c) generalized error-in-variables model, and the associated empirical evidence,
should be consulted to determine—to the extent that this is possible—the likely direction of any

(net) estimation bias.
4. The igetwos command

4.1 Syntax
The syntax for the igetwos command is
igetwos depvar [ varlistL ] [ if ] [ in ] [ weight ], instruments(varlist2) sampaux(varnamel)
depvaraux(varname2) [ options ]
where varlistl and varlist2 may contain factor variables and fweights, iweights, and pweights are
allowed.
4.2 Options
Required options
instruments(varlist2) specifies the instruments
sampaux(varnamel) specifies the name of an indicator variable identifying the observations
from the auxiliary sample

depvaraux(varname2) specifies the name of the log-parental-income variable, which is the

dependent variable in the auxiliary equation

18



GMM weight matrix options
wmatrix(wmtype) specifies the weight matrix type; weight matrix type wmtype may be robust
(the default), cluster clustvar, or unadjusted; these types of matrices are as defined in
the Stata manual entry for the gmm command
winitial(iwtype) specifies the initial weight matrix; initial weight matrix iwtype may
be unadjusted, identity (the default), or the name of a Stata matrix; these types of
matrices are as defined in the Stata manual entry for the gmm command
SE/Robust options
vce(veetype) specifies the type of standard error reported; vcetype may be robust, cluster
clustvar, bootstrap, jackknife, or unadjusted; the default vcetype is based on the
wmtype specified in the wmatrix() option; the types of standard errors, and the rules used
to define the default vcetype, are as described in the Stata manual entry for the gmm
command
Other options
nostandardize requires that, when estimating the elasticity of the expectation, the dependent
variable in the main equation not be standardized by dividing it by its mean in the main
sample (which normally helps the model converge); the default is to standardize this
variable
noinitvalues requires that initial values not be provided for GMM estimation; the default is to
provide initial values
show requires that the results of the regressions used to generate initial values be shown; the

default is not to show them
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technique(optalg) specifies the optimization technique to use; optalg may be nr, bfgs, dfp, gn
(the default), or a combination of these algorithms, which are those used by the gmm
command

othergmmoptions( ) can be used to specify any option allowed by the command gmm not
listed above, as long as the option pertains to the interactive version of that command; for
instance, specifying “othergmm(igmm igmmiterate(8) quickderivatives)" requires
igetwos to use the iterative GMM estimator (doing up to 8 iterations), and to employ an
alternative method of computing numerical derivatives for the variance-covariance
matrix

geometricmean requires estimation of the elasticity of the conditional geometric mean; the
default is to estimate the elasticity of the conditional expectation

altinitvalues requires that alternative initial values, pertaining to the two-step estimates of the
elasticity of the conditional geometric mean, be provided for the GMM estimation of the
elasticity of the conditional expectation; the default is to provide as initial values those
pertaining to the two-step estimates of the elasticity of the conditional expectation

4.3. Description and remarks

The command igetwos estimates IGEs of children's income with respect to parental
income in contexts in which (a) the measure of children's income (the dependent variable) is
available in one sample (the main sample), the measure of parental income is available in a
different sample (the auxiliary sample), and other parental variables that can be used as
instruments (e.g., parental education, parental occupation) are available in both samples, and (b)
the IGE is assumed to be constant across levels of parental income. By default, igetwos estimates
the IGE of the conditional expectation of children's income, using the GMM-E-TS estimator

introduced in Section 3. The command can also estimate the IGE of the conditional geometric
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mean of children's income, using a GMM version of the TSTSLS estimator, which requires
specifying the option geometricmean; here the two-step procedure employed by the TSTSLS
estimator is replaced by estimation of a two-equation model by GMM (relying on the approach
described in Section 3.4 for the IGE of the expectation).

The program assumes that the names of variables used in estimation have been
harmonized across samples, the auxiliary sample has been appended to the main sample, and
there is an indicator variable, specified in sampaux(varnamel), that is coded 0 for the
observations in the main sample and 1 for the observations in the auxiliary sample. It also
assumes that the dependent variable of the main equation, specified by depvar, is the children’s
income when estimating the IGE of the expectation and the logarithm of their income when
estimating the IGE of the geometric mean. In addition, the program assumes that depvar is coded
as 0 (rather than missing) in the auxiliary sample, and that the dependent variable in the auxiliary
equation, specified by option depvaraux(varname2), is coded as 0 (rather than missing) in the
main sample. If this is not the case, the program exits with an error message. At least one
instrument needs to be specified with the option instruments(varlist2). Control variables (e.g., a
polynomial on children’s age), may be specified in varilistl if desired. If one of the samples
includes weights (e.g., population weights) and the other doesn't, weights equal to 1 need to be
generated in the latter sample. Otherwise, the program will exit with an error message if
weighted estimation is requested.

The optimization algorithm employed sometimes makes a difference for whether the
model converges or not, and for the time it takes to converge. If the model under estimation has
difficulties converging, users should experiment with the various optimization algorithms

available (and combinations thereof) by using the option technique( ). Combining 15 iterations
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of the modified Newton—Raphson algorithm followed by 5 of the Davidon-Fletcher—Powell
algorithm—i.e., specifying technique(nr 15 dfp 5)—has proven particularly useful in some

cases. However, estimation with this combination may be much slower than with the default
Gauss—Newton method, so it should only be used if needed.

Specifying the option othergmm(igmm), which requests use of the iterative GMM
estimator, may lead in some cases to estimates that are (non-negligibly) different. These
estimates are likely to be more precise (Hall 2005: Sec. 2.4 and 3.6) than those obtained without
that option. Specifying the option othergmm(igmm igmmiterate(#)), with # > 2 a small
maximum number of iterations (e.g., # = 8), may be a good compromise if the iterative GMM
estimator takes too long to converge.? The iterative GMM estimator with a maximum of # > 2
iterations can still be expected to be more efficient than the default (for which # = 2). The
wmtype unadjusted and the vcetype unadjusted should in general not be used; they are allowed
by igetwos mostly because they might serve a pedagogical purpose in some contexts.

The option show displays the estimates generated by the two-step estimator on which the
relevant GMM estimator is based. By default, igetwos uses these estimates as initial values for
the latter. In addition, when estimating the IGE of the expectation, the dependent variable is
divided by its mean in the main sample—which affects the intercept of the linear predictor but
not the elasticity—as this often facilitates convergence. Both behaviors can be changed by
specifying the options noinitvalues and nostandardize, respectively. When the option
altinitvalues is specified the two-step estimates pertaining to the IGE of the geometric mean are

used as initial values for the GMM estimation of the IGE of expected income. This may be

10 Moreover, there is no guarantee that the iterative GMM estimator will converge (e.g., Hall 2005:90).
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useful in the very unlikely case that the two-step estimator of the IGE of the expectation has
trouble converging.

In addition to what is stored by gmm, igetwos stores a few macros in e( ), which are
listed in the command’s help. The following standard postestimation commands are available:

lincom, nlcom, test and nltest.
5. Estimating IGEs in the two-sample context: Examples

In this section I present examples of estimation of IGEs in the two-sample context, using
the command igetwos and a subset of the data (from the Panel Study of Income Dynamics)
employed by Mitnik (2017c). The “artificial two-sample” data | use represent U.S. men and
women born between 1966 and 1974. The annual measure of parents’ family income pertains to
when the average age of the parents was close to 40 years old, while the short-run measure of
children’s income is an average of their family income when they were 35-38 years old.! |
mostly focus on the estimation of the IGE of the expectation with the TS-GMM-E estimator, but
at the end I also present an example of estimation of the IGE of the geometric mean with the
GMM version of the TSTSLS estimator.

As required by igetwos, the names of the variables used in estimation are the same across
samples, and the auxiliary sample has been appended to the main sample. The variables used in

the examples are the following:

c_inc Child's family income

c_In_inc Logarithm of child's family income
p_In_inc Logarithm of parental income
p_age Average parental age

p_yeduc Parents' total years of education

f occ Father's occupation

C_pweight Sampling weights

cluster Cluster variable

11 Therefore, the income variables | use can be expected to generate very little lifecycle bias (see Section 3.6).
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aux Indicator variable identifying the auxiliary sample

There is one more condition that the data must satisfy for use with igetwos: The
children’s income variables need to be coded as zero (rather than missing) in the auxiliary
sample, and the parental income variable needs to be coded as zero (rather than missing) in the

main sample. | start by reading the data and doing the needed replacements:

. use igetwos_data, clear

. qui replace c_inc = 0 if aux == 1
. qui replace c_In_inc = 0 if aux == 1
. qui replace p_In_inc = 0 if aux == 0

The command igetwos does not accept the survey prefix svy but does allow population
weights, which need to be specified with the data at hand. It also allows to request a weight
matrix that accounts for arbitrary correlation among observations within clusters, and that
cluster-robust standard errors be computed, both of which are also needed here.*? In all cases |
specify the option othergmm(nolog) to save space, but it’s better not to do so (to be able to
examine the iteration log for potential convergence issues).

In the first example | use parents’ years of education as instrument, producing an estimate

of the IGE of expected income of 0.76. The command and the corresponding output are:

12 This is needed because of the relationship between the observations in the main and the auxiliary samples (see
Mitnik 2017¢:22).
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. igetwos c_inc [pw=c_pweight], instruments(p_yeduc) sampaux(aux) depvaraux(p_In_inc) wmatrix (cluster cluster) othergmm(nolog)
Final GMM criterion Q(b) = 7.53e-31
note: model is exactly identified

GMM estimation

Number of parameters = 4

Number of moments = 4

Initial weight matrix: ldentity Number of obs = 1,646
GMM weight matrix: Cluster (cluster)

Two-sample estimation of the intergenerational elasticity of the expectation
GMM-E-TS estimator
(Std. Err. adjusted for 823 clusters in cluster)

Robust
Coef. Std. Err. z P>|z]| [95% Conf. Interval]
p_yeduc .151169 .0118903 12.71 0.000 .1278644 .1744736
_cons 9.249505 .1560973 59.25 0.000 8.94356 9.55545
/main_ige .7601429 .096159 7.91 0.000 .5716748 .948611
/main_cons -8.522528 1.078968 -7.90 0.000 -10.63727 -6.40779

Instruments for equation aux: p_yeduc _cons
Instruments for equation main: p_yeduc _cons
The dependent variable was standardized by dividing it by its mean in the main sample

Mobility scholars often include polynomials on parents’ or children’s age as controls, or
specify different intercepts by gender or birth cohort. In the next example the auxiliary equation
and the linear predictor of the main equation include a quadratic polynomial on parents’ age. As
the model converges very slowly with the default algorithm, I specify the option technique(nr
15 dfp 5). I also conduct a Wald test of the null hypothesis that all parental-age coefficients are

Zero.
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. igetwos c_inc c.p_age c.p_age#c.p_age [pw=c_pweight], instruments(p_yeduc) sampaux(aux) depvaraux(p_In_inc) wmatrix (cluster
> cluster) tech(nr 15 dfp 5) othergmm(nolog)

Final GMM criterion Q(b) = 8.56e-31
note: model is exactly identified

GMM estimation

Number of parameters = 8

Number of moments = 8

Initial weight matrix: ldentity Number of obs = 1,646
GMM weight matrix: Cluster (cluster)

Two-sample estimation of the intergenerational elasticity of the expectation
GMM-E-TS estimator
(Std. Err. adjusted for 823 clusters in cluster)

Robust
Coef. Std. Err. z P>]z| [95% Conf. Interval]
aux
p_age .2168265 .0331215 6.55 0.000 .1519095 .2817436
c.p_age#c.p_age -.0023949 .0003756 -6.38 0.000 -.003131 -.0016588
p_yeduc -1394899 .0109218 12.77 0.000 .1180835 .1608963
_cons 4.64172 .7400395 6.27 0.000 3.191269 6.092171
main_ige
_cons . 7979627 .1066729 7.48 0.000 .5888877 1.007038
main_other
p_age -.0658816 .0593434 -1.11  0.267 -.1821926 .0504294
c.p_age#c.p_age .000635  .0006781 0.94 0.349 -.000694 .0019641
_cons -7.347712  1.204494 -6.10 0.000 -9.708477  -4.986948

Instruments for equation aux: p_yeduc p_age c.p_age#c.p_age _cons
Instruments for equation main: p_yeduc p_age c.p_age#c.p_age _cons
The dependent variable was standardized by dividing it by its mean in the main sample

. test [aux]p_age [aux]c.p_age#c.p_age [main_other]p_age [main_other]c.p_age#c.p_age

(1) [Jaux]p_age =0

( 2) [aux]c.p_age#c.p_age = O

( 3) [main_other]p_age = 0

( 4) [main_other]c.p_age#c.p_age = 0

chi2( 4)
Prob > chi2

44.24
0.0000

In all results tables produced by igetwos, the IGE of the expectation is identified by the
term “ige.” However, as we can see by comparing the output from the first two examples, the
structure of the table is different when the equations include additional right-hand variables,
beyond those that are required, and when they don’t. In the last example the null hypothesis that
all parental-age coefficients are zero is strongly rejected, while including parental-age controls

increases the estimated IGE from 0.76 to 0.80.
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In the above examples, the computation of cluster-robust standard errors is implied by the
use of a weight matrix of the wmtype cluster. This is so because the default vcetype in igetwos is
based on the wmtype specified in the wmatrix() option. Now, as the default wmtype is robust,
the default vcetype is also robust. Therefore, had the data been the result of simple random
sampling, estimation of the model in the first example could have been accomplished by the
following command:

. igetwos c_inc, instrunents(p_yeduc) sampaux(aux) depvaraux(p_ln_inc)

that is, without having to specify robust standard errors (which are mandatory with the GMM-
E-TS estimator). This command only includes the minimum information required by igetwos:
The children’s income variable, one instrument, the indicator variable identifying the auxiliary
sample, and the parents’ income variable (in logarithms).

In the following example | estimate a model in which both parents’ years of education
and its square are used as instruments. In addition to the option technique(nr 15 dfp 5), I include
in this case the options igmm igmmiterate(8) (as arguments for othergmm). This requires that
the iterative GMM estimator rather than the default (two-step) GMM estimator be used, with a
maximum of 8 iterations. When there is more than one instrument, use of the iterative GMM
estimator is recommended unless it is too computationally expensive, as it is likely to improve
precision in finite samples (e.g. Hall 2005:Sec. 2.4 and 3.6).® The results follow, showing a

larger IGE estimate than in the previous two examples:

13 When there is only one instrument the model is exactly identified, so requesting that the iterative GMM estimator
be used would make no difference.
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igetwos c_inc [pw=c_pweight], instruments(c.p_yeduc c.p_yeduc#c.p_yeduc) sampaux(aux) depvaraux(p_In_inc) wmatrix (cluster
> cluster) othergmm(igmm igmmiterate(8) nolog) tech(nr 15 dfp 5)

note: iterative GMM parameter vector converged
Final GMM criterion Q(b) = .0018108

GMM estimation

Number of parameters = 5

Number of moments = 6

Initial weight matrix: ldentity Number of obs = 1,646
GMM weight matrix: Cluster (cluster)

Two-sample estimation of the intergenerational elasticity of the expectation
GMM-E-TS estimator
(Std. Err. adjusted for 823 clusters in cluster)

Robust
Coef. Std. Err. z P>|z]| [95% Conf. Interval]
p_yeduc .2641736 .0691993 3.82 0.000 .1285455 .3998017
c.p_yeduc#c.p_yeduc -.0045586 .0027657 -1.65 0.099 -.0099792 .0008621
_cons 8.575029 .4330422 19.80 0.000 7.726281 9.423776
/main_ige .8392476 .1008401 8.32 0.000 .6416046 1.036891
/main_cons -9.427891 1.129275 -8.35 0.000 -11.64123 -7.214553

Instruments for equation aux: p_yeduc c.p_yeduc#c.p_yeduc _cons
Instruments for equation main: p_yeduc c.p_yeduc#c.p_yeduc _cons
The dependent variable was standardized by dividing it by its mean in the main sample

In the last example of estimation of the IGE of the expectation I instrument the logarithm

of parental income with father’s occupation:
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igetwos c_inc [pw=c_pweight], instruments(i.f_occ) sampaux(aux) depvaraux(p_In_inc) wmatrix (cluster cluster) othergmm(igmm
> igmmiterate(8) nolog)

note: maximum number of GMM iterations reached
Final GMM criterion Q(b) = .0086305

GMM estimation

Number of parameters = 28

Number of moments = 52

Initial weight matrix: ldentity Number of obs = 1,646
GMM weight matrix: Cluster (cluster)

Two-sample estimation of the intergenerational elasticity of the expectation
GMM-E-TS estimator
(Std. Err. adjusted for 823 clusters in cluster)

Robust

Coef. Std. Err. z P>|z| [95% Conf. Interval]
f_occ

Management Occupations .8471031 .2279306 3.72 0.000 .4003674 1.293839
Business Operations Specialists .4077496 .2318577 1.76 0.079 -.0466831 .8621823
Financial Specialists .9509485 .2331198 4.08 0.000 .4940421 1.407855
Computer and Mathematical Occupations .9332384 .2413502 3.87 0.000 .4602007 1.406276
Architecture and Engineering Occs. .8612367 .2213648 3.89 0.000 .4273697 1.295104
Life, Physical, and Soc. Sc. Occs. -9000847 .236265 3.81 0.000 .4370139 1.363155
Community and Social Servs. Occs. .5672572 .2139008 2.65 0.008 .1480194 .9864951
Legal Occupations -9639085 .2043673 4.72 0.000 .5633559 1.364461
Education, Train., and Libr. Occs. .8108536 .2153782 3.76  0.000 .3887202 1.232987
Arts, Entert., Sports, and Media Occs. -925338 .2440441 3.79 0.000 .4470203 1.403656
Healthcare Pract. and Tech. Occs. 1.600948 .3486855 4.59 0.000 .9175367 2.284359
Protective Service Occupations .4813879 .230227 2.09 0.037 .0301512 .9326246
Food Prep. and Serving Occupations -.5133608 .2324357 -2.21 0.027 -.9689264 -.0577952
Build. and Grounds Maint. Occs. -4490451 .2706515 1.66 0.097 -.0814222 .9795123
Personal Care and Service Occs. -.7091729 .2726534 -2.60 0.009 -1.243564 -.1747821
Sales Occupations .8022835 .2194434 3.66 0.000 .3721824 1.232385
Office and Admin. Support Occs. .6616396 .2328086 2.84 0.004 .2053431 1.117936
Farming, Fish., and Forestry Occs. -.0956289 .2945765 -0.32 0.745 -.6729883 .4817305
Construction Trades .3426118 .240438 1.42 0.154 -.1286379 .8138616
Extraction Workers -.1082022 .2137761 -0.51 0.613 -.5271958 .3107913
Inst., Maint., and Repair Workers .666307 .2197162 3.03 0.002 .2356712 1.096943
Production Occupations .3118101 .2123924 1.47 0.142 -.1044712 .7280915
Transp. and Material Moving Occs. .1863674 .2209405 0.84 0.399 -.246668 .6194027
Military Specific Occupations .0890247 .2589855 0.34 0.731 -.4185774 .5966269
DK; NA; refused .1579864 .2281778 0.69 0.489 -.2892339 .6052067
_cons 10.62132 .2042851 51.99 0.000 10.22093 11.02172
/main_ige .7010749 .0851351 8.23 0.000 .5342131 .8679366
/main_cons -7.910494 .9483669 -8.34  0.000 -9.769259  -6.051729

Instruments for equation aux: Ob.f_occ 1.f_occ 2.f _occ 3.f occ 4.f occ 5.f occ 6.Ff_occ 7.f_occ 8.f _occ 9.f occ 10.f occ
11.f_occ 13.f_occ 14.f occ 15.f occ 16.f occ 17.f occ 18.Ff_occ 19.f _occ 20.f _occ 21.f occ 22.f occ 23.f_occ 24.f_occ
25.Ff_occ 999.f occ _cons

Instruments for equation main: Ob.f occ 1.f _occ 2.f_occ 3.f occ 4.f_occ 5.f_occ 6.F occ 7.f_occ 8.Ff _occ 9.f occ 10.f _occ
11.f occ 13.f occ 14.f occ 15.Ff occ 16.f_occ 17.f_occ 18.F occ 19.f occ 20.f occ 21.f_occ 22.f_occ 23.f_occ 24.f occ
25.f_occ 999.f occ _cons

Warning: convergence not achieved

The dependent variable was standardized by dividing it by its mean in the main sample

As in the previous example with multiple instruments, here | requested that the iterative
GMM estimator, with up to 8 iterations, be used (rather than the default GMM estimator, where
the number of iterations is 2). Unlike in the previous example, however, in this case the GMM
iterative estimator did not converge in 8 iterations, and this is noted in two places in the output:

Indirectly at the top, where there is a note saying “maximum number of GMM iterations
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reached,” and directly at the bottom, where there is a warning saying “convergence not
achieved.” This is fully unproblematic. Like the default estimator, any GMM iterative estimator
based on # > 2 iterations is consistent; moreover, as already indicated, it is likely more efficient
that the default estimator in finite samples.

As | am using data that are “artificially two-sample,” and the original data include a
measure of long-run parental income, the long-run IGE of the expectation can be estimated with
the PPML estimator. This estimate is 0.60 (Mitnik 2017b: Table 3). Examining the results
obtained in this section, we see that, as expected (a) all IGE estimates produced by the GMM-E-
TS estimator are upper-bound estimates, and (b) there is substantial variation across instruments,
i.e., while the estimate using father’s occupation as instrument is 0.70, those obtained by using
parents’ years of education, alone and as second degree polynomial (0.76 and 0.84, respectively),
provide looser upper bounds.

I finish the section with an example of estimation of the conventional IGE, in which | use
parents’ years of education as instrument. Estimation of the conventional IGE is achieved by
substituting the logarithm of children’s income for children’s income as outcome variable, and
specifying the option geometricmean. | also specify the option show, just to show that, with a

single instrument, igetwos reproduces the point estimate obtained with the TSTSLS estimator.
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igetwos c_In_inc [pw = c_pweight], instruments(p_yeduc) sampaux(aux) depvaraux(p_In_inc) wmatrix (cluster cluster) geometri
> cmean show othergmm(nolog)

Generating initial values

First-step regression
(sum of wgt is 3.1493e+04)

Linear regression Number of obs = 823
F(1, 821) = 161.24
Prob > F = 0.0000
R-squared = 0.1996
Root MSE = .66842

Robust
p_In_inc Coef. Std. Err. t P>]t] [95% Conf. Interval]
p_yeduc .151169 .0119048 12.70  0.000 .1278015 .1745364
_cons 9.249505 .1562873 59.18 0.000 8.942735 9.556275

Second-step regression
(sum of wgt is  3.1455e+04)

Linear regression Number of obs = 821
F(1, 819) = 75.33
Prob > F = 0.0000
R-squared = 0.1325
Root MSE = . 77855

Robust
c_In_inc Coef. Std. Err. t P>|t] [95% Conf. Interval]
p_In_inc_hat .9117561 .1050486 8.68  0.000 .7055599 1.117952
_cons 1.060185  1.180002 0.90 0.369 -1.255999 3.376369

Joint estimation by GMM
Final GMM criterion Q(b) = 1.20e-31
note: model is exactly identified

GMM estimation

Number of parameters = 4

Number of moments = 4

Initial weight matrix: ldentity Number of obs = 1,644
GMM weight matrix: Cluster (cluster)

Two-sample estimation of the intergenerational elasticity of the geometric mean
GMM version of the TSTSLS estimator
(Std. Err. adjusted for 823 clusters in cluster)

Robust
Coef. Std. Err. z P>|z]| [95% Conf. Interval]
p_yeduc .151169  .0118903 12.71  0.000 .1278644 .1744736
_cons 9.249505  .1560973 59.25 0.000 8.94356 9.55545
/main_ige_gm .9117561  .1087229 8.39  0.000 .6986632 1.124849
/main_cons 1.060185  1.221688 0.87 0.386 -1.334279 3.454649

Instruments for equation aux: p_yeduc _cons
Instruments for equation main: p_yeduc _cons

The estimate of 0.91 is larger than the log-run estimate of the conventional IGE obtained with

the underlying data and the OLS estimator, which puts that IGE at 0.70 (Mitnik 2017b: Table 3).
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This is in agreement with the standard approach in the literature, which treats TSTSLS estimates

as upper-bound estimates.
6. Concluding remarks

I have introduced the user-written program igetwos, which estimates IGEs in the two-
sample context. Together, the already available commands poisson and ivpoisson and the new
command igetwos offer a full suite of estimators of the IGE of the expectation. Using these
estimators, it is possible to use Stata to easily estimate this IGE in all situations in which the IGE
of the geometric mean has been estimated by mobility scholars. The first two commands
implement the PPML and GMM-1VP estimators and may be used to estimate the IGE of the
expectation with any dataset that may be used to estimate the conventional IGE with the OLS
and TSLS estimators, respectively. Similarly, the new command introduced here may be used to
estimate the IGE of the expectation with any pair of datasets that may be used to estimate the
conventional IGE with the TSTSLS estimator. Given that the diffusion of statistical advances is
closely tied to their embodiment in statistical software (Koenker and Hallock, 2001:153), and
that Stata is extensively used by mobility scholars, I hope that igetwos will make a significant
contribution to the replacement of the conventionally estimated IGE by the IGE of the expected

income as the workhorse intergenerational elasticity.
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