
 

 
 
 
 
 
 
 
 
 

TWO-SAMPLE ESTIMATION OF THE INTERGENERATIONAL 

ELASTICITY OF EXPECTED INCOME 

 
 
 

Pablo A. Mitnik 
 (pmitnik@stanford.edu) 

 
 

November, 2017 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The Stanford Center on Poverty and Inequality is a program of the Institute for Research in the 
Social Sciences at Stanford University.  



Abstract 

 
The intergenerational income elasticity (IGE)—the workhorse measure of economic mobility—

has very often been estimated with short-run income measures drawn from two independent 

samples and using the Two-Sample Two-Stage Least Squares estimator. The IGE conventionally 

estimated in the literature, however, has been widely misinterpreted: While it is assumed that it 

pertains to the conditional expectation of children’s income, it actually pertains to its conditional 

geometric mean. This has led to a call to replace it by the IGE of the expectation, which requires 

developing the methodological knowledge necessary to estimate the latter with short-run income 

measures drawn from two independent samples. This paper contributes to this aim in three ways. 

First, it advances a two-sample Generalized Method of Moments estimator of the exponential 

regression model, which can be used to estimate the IGE of the expectation. Second, it develops 

a generalized error-in-variables model for the estimation of the IGE of the expectation with that 

estimator and short-run income measures. Lastly, the paper uses data from the Panel Study of 

Income Dynamics to estimate the IGE of the expectation with the instruments typically available 

to mobility scholars. The empirical results are consistent with the predictions of the formal 

analysis and show that, if the income measures are obtained when parents and children are close 

to 40 years old, the estimates generated by the two-sample estimator need to be interpreted as 

upper-bound estimates and vary substantially across instruments. This suggests that mobility 

scholars should estimate the IGE with a variety of instruments, and then select the estimate that 

provides the tightest bound as the preferred upper-bound estimate.  

 

  



Introduction 

The intergenerational income elasticity (IGE) is the workhorse measure of economic 

mobility (Solon 1999; Corak 2006; Black and Devereaux 2011). It has been very extensively 

estimated to assess a country’s overall level of income or earnings mobility, and to conduct 

comparative analyses of economic mobility across geographic areas, demographic groups, and 

time periods (e.g., Björklund and Jäntti 2000; Chadwick and Solon 2002; Hertz 2005, 2007; 

Aaronson and Mazumder 2008; Bloome and Western 2011), among other purposes.  

In spite of the IGE’s centrality in the intergenerational-mobility field, Mitnik and Grusky 

(2017) have recently shown that this elasticity has been widely misinterpreted. Indeed, the IGE 

has been construed as pertaining to the expectation of children’s income conditional on their 

parents’ income—as apparent, for instance, in its oft-invoked interpretation as a measure of 

regression to the (arithmetic) mean. However, the IGE estimated in the literature pertains to the 

conditional geometric mean of the children’s income. As explained later, this not only makes all 

conventional interpretations of the IGE invalid but also has very deleterious methodological 

consequences.  

Mitnik and Grusky (2017) have argued that both the conceptual and the methodological 

problems can be solved in a straightforward manner by simply replacing the IGE of the 

geometric mean—the de facto estimated IGE—by the IGE of the expectation—the IGE that 

mobility scholars thought they were estimating—as the workhorse intergenerational elasticity. 

They have also called for effectuating such replacement. This requires, however, that the 

methodological knowledge needed to estimate the latter IGE with short-run income variables is 

made available.  

Indeed, as the IGE is defined in terms of the long-run incomes of parents and children, 
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the fact that it is almost always estimated with short-run proxy measures of income—that is, with 

income variables affected by substantial measurement error—has been a central issue in the 

mobility literature. The main concerns have been (a) the attenuation bias that may result from 

estimating the IGE by Ordinary Least Squares (OLS) when parental income is measured with 

error, (b) the amplification bias that may result from estimating the IGE by instrumental 

variables (IV) and Two-Stage Least Squares (TSLS) with an invalid instrument, where the latter 

is invalid because it is positively correlated to the error term in the population regression 

function of interest, (c) the lifecycle biases that may result when the differences in short-run 

incomes between children or between parents do not capture well the differences in their long-

run incomes, and (d) the interactions between the sources of bias just mentioned. Since the mid-

2000s, the literature has relied on measurement-error models that allow for lifecycle biases and 

subsume the classical measurement-error model as a special case. Thus, Haider and Solon (2006) 

advanced the generalized error-in-variables (GEiV) model for the estimation of the conventional 

IGE by Ordinary Least Squares (OLS), while an analogous model for its estimation with 

instrumental variables—labelled the “GEIV-IV model” by Mitnik (2017b)—has been implicitly 

invoked by mobility scholars.1  

Two recent papers developed similar measurement-error models for the estimation of the 

IGE of the expectation, so as to make its substitution for the IGE of the geometric mean 

methodologically feasible. Mitnik (2017a) advanced a generalized error-in-variables model for 

the estimation of the IGE of the expectation with the Poisson Pseudo Maximum Likelihood 

(PPML) estimator (Santos Silva and Tenreyro 2006, 2011). This is the estimator employed by 

Mitnik et al. (2015), the first study that estimated that IGE rather than the IGE of the geometric 

mean. Mitnik and Grusky (2017) and Mitnik (2017a) have proposed that this estimator plays for 
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the IGE of the expectation the role that the OLS estimator has played for the conventional IGE.2 

Likewise, Mitnik (2017b) developed two alternative generalized error-in-variables models for 

the estimation of the IGE of the expectation with the additive-error version of the Generalized 

Method of Moments (GMM) IV estimator of the Poisson or exponential regression model 

(Mullahy, 1997; Windmeijer and Santos Silva, 1997); he also proposed that this estimator, to 

which I will refer as the GMM-IVP estimator, plays for the estimation of the IGE of the 

expectation the same role that the linear IV and TSLS estimators have played for the estimation 

of the conventional IGE.   

These recent contributions did not address, however, a key problem that mobility scholars 

very often confront. Few countries count with samples in which the incomes of parents and their 

children are both measured in some period during adulthood.3 For this reason, the IGE has very 

often been estimated not just with annual and other short-run proxy income measures, but with 

short-run income measures drawn from two independent samples and using the Two-Sample 

Two-Stage Least Squares (TSTSLS) estimator (Jerrim et al. 2016)4. Although the instruments 

typically available to mobility scholars (e.g., father’s or parents’ education or occupation) are 

very likely invalid for the reason mentioned earlier—that is, because they are endogenous—the 

standard interpretation has been that the resulting estimates are still useful as upper-bound 

estimates (e.g., Björklund and Jäntti 1997), or as upward-biased estimates that can be adjusted ex 

post to make them comparable to OLS estimates (e.g., Corak 2006: Appendix).  

It is therefore important to make available a two-sample estimator of the IGE of the 

expectation. Building on existing two-step IV estimators (Mullahy 1997:590-591; Carroll et al. 

2006:139-140), and on the approach of stacking moment conditions first advanced by Newey 

(1984), I propose here a two-sample GMM estimator of the Poisson or exponential regression 
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model, to which I refer as the GMM-E-TS estimator, which can be used with that purpose. If the 

samples included information on long-run income, this would be all that is needed. However, as 

Jerrim et al. (2016) have pointed out in their criticism of the formal analysis underpinning the 

standard interpretation of the TSTSLS estimates of the conventional IGE as upper-bound 

estimates, the samples available only have information on the short-run (typically, annual) 

incomes of parents and children. To account for this fact, I also specify a generalized error-in-

variables model for use with the GMM-E-TS estimator; this allows me to make explicit the full 

sets of conditions under which consistent, approximately consistent and upper-bound estimation 

of the IGE of the expectation can be achieved. The GMM-E-TS estimator and the GEiVE-TS 

model are the first two contributions of the paper.  

The approach I advance for the two-sample estimation of the IGE of the expectation with 

short-run income variables is predicated on several assumptions being at least approximately 

correct, so it is important to assess its empirical performance. In addition, the measurement-error 

model has clear empirical implications for how the use of income measures pertaining to when 

parents or children are too young or too old to represent lifetime differences well should affect 

IGE estimates, and these can be tested. Here I rely on a U.S. sample from the Panel Study of 

Income Dynamics (PSID) to carry out the needed empirical analyses. My results indicate that the 

estimator works as expected, and that the observed lifecycle and amplification biases are in close 

agreement with the qualitative predictions of the formal analysis. They also show that, as long as 

the income measures are obtained when parents and children are close to 40 years old, the 

estimates generated with the two-sample estimator and the instruments typically available to 

mobility scholars need to be interpreted as upper-bound estimates (as expected), and vary 

significantly across instruments. These empirical conclusions are the paper’s third contribution. 
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The structure of the rest of the paper is as follows. I first explain why the conventional 

IGE pertains to the conditional geometric mean of children’s income rather than to its 

conditional expectation, as well as Mitnik and Grusky’s (2017) proposal to redefine the IGE used 

as the workhorse measure of economic mobility. The next three sections introduce the two-

sample GMM estimator of the Poisson or exponential regression model and discuss the issues 

involved in estimating the IGE of the expectation with short-run income variable in the two-

sample context. This is followed by the empirical analyses. The last section draws the main 

conclusions of the paper. 

The IGE of what? Redefining the workhorse intergenerational elasticity 

As already indicated, the conventionally estimated IGE has been widely misinterpreted. 

While mobility scholars have interpreted it as the elasticity of the expectation of children’s 

income or earnings conditional on parental income, that IGE pertains in fact to the conditional 

geometric mean. Closely following Mitnik and Grusky’s (2017) analysis, the standard population 

regression function (PRF) posited in the literature, which assumes the elasticity is constant across 

levels of parental income, is:  

𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥,                                               [1] 

where 𝑌𝑌 is the child’s long-run income or earnings, X is long-run parental income or father’s 

earnings, 𝛽𝛽1 is the IGE as specified in the literature, and I use expressions like “Z|𝑤𝑤” as a 

shorthand for "𝑍𝑍|𝑊𝑊 = 𝑤𝑤.” The parameter 𝛽𝛽1 is not, in the general case, the elasticity of the 

conditional expectation of the child’s income. This would hold as a general result only if 

𝐸𝐸(ln𝑌𝑌|𝑥𝑥) = ln𝐸𝐸(𝑌𝑌|𝑥𝑥). But, due to Jensen’s inequality, the latter is not the case. Instead, as 

𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) = ln exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), and 𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), Equation [1] is equivalent to 

ln𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥 ,                                           [2] 
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where GM denotes the geometric mean operator. Therefore, 𝛽𝛽1 is the elasticity of the conditional 

geometric mean, i.e., the percentage differential in the geometric mean of children’s long-run 

income with respect to a marginal percentage differential in parental long-run income.5 

As the geometric mean is undefined whenever an income distribution includes zero in its 

support, the IGE is undefined as well when this is the case. Mitnik and Grusky (2017:Sections III 

and IV) have argued that this has serious methodological consequences: It (a) makes it 

impossible to determine the extent to which parental economic advantage is transmitted through 

the labor market among women (as many women have zero earnings), and (b) greatly hinders 

research on the role that marriage plays in generating the observed levels of intergenerational 

persistence in family income (as many people remain single or have nonworking spouses, and 

therefore cannot be included in analyses examining the relationship between people’s parental 

income and the income contributed by their spouses). As a result, the study of gender and 

marriage dynamics in intergenerational processes has been badly hampered. Equally important, 

Mitnik and Grusky (2017) have shown that, as a consequence of mobility scholars’ expedient of 

dropping children with zero earnings from samples (to address what is perceived as the problem 

of the logarithm of zero being undefined), estimation of earnings IGEs with short-run proxy 

earnings measures is almost certainly affected by substantial selection biases. This makes the use 

of the IGE of men’s individual earnings as an index of economic persistence and mobility in a 

country a rather problematic practice.6 

To address these problems, Mitnik and Grusky’s (2017) have called for redefining the 

workhorse measure of economic mobility. This entails replacing the PRF of Equation [1] by a 

PRF whose estimation delivers estimates of the IGE of the expectation in the general case. Under 

the assumption of constant elasticity, that PRF can be written as:                                         
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ln𝐸𝐸(𝑌𝑌|𝑥𝑥) = 𝛼𝛼0 + 𝛼𝛼1 ln 𝑥𝑥 ,                                                   [3]     

where 𝑌𝑌 ≥ 0, 𝑋𝑋 > 0 and  𝛼𝛼1 = 𝑑𝑑 ln𝐸𝐸(𝑌𝑌|𝑥𝑥)
𝑑𝑑 ln𝑥𝑥

 is the percentage differential in the expectation of 

children’s long-run income with respect to a marginal percentage differential in parental long-run 

income. Crucially, (a) all interpretations incorrectly applied to the conventional IGE are correct 

under this formulation (see Mitnik and Grusky 2017:Section IV.A), and (b) the IGE of the 

expectation is fully immune to the methodological problems affecting the IGE of the geometric 

mean and, in particular, is very well suited for studying the role of marriage in the 

intergenerational transmission of advantage (see Mitnik and Grusky 2017:Section IVb for 

details; and Mitnik et al. 2015:64-68 for an empirical application). 

A two-sample two-step estimator of the Poisson or exponential regression model 

In the two-sample context, the “main sample” has the children’s income information, the 

“auxiliary sample” has the parents’ income information, and both samples have a common set of 

variables (e.g., father’s or parents’ education or occupation) that may be used as instruments or 

predictors for the parents’ income information. The two-sample GMM estimator I propose here 

is based on a two-sample two-step estimator, which in turn builds on existing one-sample two-

step IV estimators. In the one-sample context, two types of two-step IV estimators of the Poisson 

or exponential regression model—or of broader classes of models including it—have been 

advanced. Predictor-substitution estimators (e.g., Mullahy 1997:590-591; Carroll et al. 2006:139-

140) substitute predicted values of the endogenous variables, obtained in the first step, into the 

second-step equation (the exponential or Poisson regression model). Residual-inclusion 

estimators (e.g., Wooldrige 1999:Sec. 6.1; Tersa et al. 2008) add the residuals from the first step 

as additional covariates in the second step. Tersa et al. (2008) have shown that the latter 

estimators are generally consistent while the former are not. Unfortunately, residual-inclusion 

7



estimators cannot be used in the two-sample context, as the residuals from the first step do not 

pertain to the observations employed by the second-step estimator. Therefore, I focus here on the 

predictor-substitution approach and carefully establish the assumptions needed for consistency. 

 The one-sample IV estimators proposed by Mullahy (1997) and Carroll et al. (2006) are 

derived under partially different assumptions (more on this below) but they involve identical 

steps and therefore produce identical estimates.7 Operationally, they simply extend the approach 

used by the TSLS estimator of the linear regression model to the estimation of the exponential 

regression model. Thus, when there is only one endogenous variable, the first step estimates a 

conditional expectation model of that variable as a linear function of the instruments and any 

right-side exogenous variables included in the second step, while the second step estimates the 

exponential regression model of interest using the PPML estimator, with the endogenous 

variable replaced by its predicted values (which are computed with the parameters estimated in 

the first step). Two observations are important here. First, it is apparent that the two steps just 

described can be carried out unproblematically in the two-sample context, thus yielding a two-

sample predictor-substitution estimator. Second, as IV estimation is consistent even if the 

instrumented variables are measured without error, the same two-step approach can be used to 

estimate the IGE of the expectation when the long-run income variables of children and parents 

are available (although in different samples). In the rest of this section I assume that this is the 

case. This allows me to focus exclusively on the issues generated by the fact that the information 

is split between two samples, while the additional complications generated by the fact that most 

available datasets only have short-run income measures are addressed in the next section.  
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The two-sample two-step estimator with a valid instrument 

I discuss next the assumptions under which the two-sample predictor-substitution 

estimator of the exponential regression model is consistent or approximately consistent when all 

variables are measured without error. Without any loss of generality, I assume in what follows 

that 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(ln𝑋𝑋) = 1. 8 

Rewriting Equation [3] in additive-error form, the PRF of interest is 

𝑌𝑌 = exp(𝛼𝛼0 + 𝛼𝛼1 ln𝑋𝑋) + Ψ,                                        [4] 

where 𝐸𝐸(Ψ|𝑥𝑥) = 0. Assuming for simplicity that there is only one quantitative instrument  

denoted by T (e.g., years of parental education), the fist-step equation is the population linear 

projection: 

ln𝑋𝑋 = 𝛾𝛾0 + 𝛾𝛾1𝑇𝑇 + 𝑅𝑅.                                                       [5]  

Consider now the following assumptions, which apply to all t when relevant: 

 𝐴𝐴1.  𝐸𝐸(𝑅𝑅|𝑡𝑡) = 0                                        

           𝐴𝐴2.∀𝑐𝑐 > 0,𝐸𝐸(exp(𝑐𝑐𝑅𝑅)|𝑡𝑡) = 𝐸𝐸(exp(𝑐𝑐𝑅𝑅))    

    𝐴𝐴2′.𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅|𝑡𝑡) = Var(𝑅𝑅)                                            

    𝐴𝐴3.  𝛾𝛾1 ≠ 0    

𝐴𝐴4.  𝐸𝐸(Ψ|𝑡𝑡) = 𝐸𝐸(Ψ).                             

Assumptions A1 and A3 entail that the expectation of the logarithm of parental income 

conditional on the value of T is a linear function of that value, while assumptions A3 and A4 

entail that T is a valid instrument. These three assumptions are identical or functionally 

equivalent to assumptions made by Mullahy (1997) and Carroll et al. (2006) in deriving their 

two-step IV estimators. Assumption A2 is similar to an assumption made by Mullahy (1997), 

and to the standard assumption made for the estimation of Poisson models with unobserved 
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heterogeneity (e.g., Winkelman 2008); it is automatically satisfied if the error in the first-step 

equation is independent from the instrument (rather than just mean independent, as specified by 

assumption A1). Assumption A2’ posits that this error is homoscedastic. As I show below, A2’ is 

an alternative to A2. Although A2’ is not strictly weaker than A2 (neither assumption entails the 

other), the fact that the dependent variable in the first-step equation is the logarithm of an income 

variable may make A2’ more attractive than A2.  

I start by showing that under assumptions A1, A2, A3 and A4 the two-sample estimator 

of 𝛼𝛼1 is consistent, while it is approximately consistent if A2 is replaced by A2’. Substituting 

Equation [5] into Equation [4], and using A1 and A3, yields: 

 𝑌𝑌 = exp(𝛼𝛼0 + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) + 𝛼𝛼1𝑅𝑅) + Ψ                                          

𝐸𝐸(𝑌𝑌|𝑡𝑡) = exp�𝛼𝛼0 + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)� 𝐸𝐸(exp(𝛼𝛼1 𝑅𝑅)|𝑡𝑡) + 𝐸𝐸(Ψ|𝑡𝑡).     [6]             

Using now A2, Equation [6] reduces to: 

𝐸𝐸(𝑌𝑌|𝑡𝑡) = exp�𝛼𝛼0′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)� + 𝐸𝐸(Ψ|𝑡𝑡),                               [7]          

where 𝛼𝛼0′ = 𝛼𝛼0 + ln𝐸𝐸(exp(𝛼𝛼1𝑅𝑅); and it further reduces to  

𝐸𝐸(𝑌𝑌|𝑡𝑡) = exp�𝛼𝛼0′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)�                                                    [8]          

if assumption A4 also holds, that is, if the instrument is valid.9 If the variable 𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) were 

available in the estimation sample, Equation [8] would be consistently estimated by the PPML 

estimator (e.g., Santos Silva and Tenreyro 2006). Under a standard identification condition for 

two-step M-estimators (e.g., Wooldridge 2002:354), the PPML estimator that replaces 

𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) by estimates obtained in the first step, is also consistent.10 

 An alternative justification for this estimator as “approximately consistent”—which is in 

the spirit of the “regression calibration approximation” employed by Carroll et al. (2006) to 
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derive their two-step estimator—is as follows. Going back to Equation [6], a second-order 

Taylor-series approximation around 𝐸𝐸(𝑅𝑅|𝑡𝑡) gives: 

𝐸𝐸(exp(𝛼𝛼1𝑅𝑅)|𝑡𝑡) ≅ exp�𝛼𝛼1𝐸𝐸(𝑅𝑅|𝑡𝑡)� + 0.5 exp�𝛼𝛼1𝐸𝐸(𝑅𝑅|𝑡𝑡)�  [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅|𝑡𝑡)  

   ≅ 1 + 0.5  [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅|𝑡𝑡),                               

where I have used assumption A1. Under assumption A2’, we then obtain: 

𝐸𝐸(𝑌𝑌|𝑡𝑡) ≅ exp�𝛼𝛼0′′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)� + 𝐸𝐸(Ψ|𝑡𝑡),                               [7′]          

where 𝛼𝛼0′′ = 𝛼𝛼0 + ln(1 + 0.5  [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅)); and we obtain 

𝐸𝐸(𝑌𝑌|𝑡𝑡) ≅ exp�𝛼𝛼0′′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝑡𝑡)� ,                                                   [8′]          

if A4 also holds. Equation [8’] indicates that the two-sample two-step estimator is approximately 

consistent for 𝛼𝛼1 when A2’s is substituted for A2.11  

 Resorting to Taylor-series expansions, Mitnik (2017a:14 and Appendix, A) has advanced 

an approximated closed form expression for 𝛼𝛼1 in PRFs like [8] and [8’]. Applying it here for 

future reference, it yields: 

𝛼𝛼1 ≅ 𝐶𝐶𝛼𝛼1 − ��𝐶𝐶𝛼𝛼1�
2
− 𝑉𝑉𝛼𝛼1�

1
2 ,                                           [9]           

where  

𝑉𝑉𝛼𝛼1 = 2 �𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸(ln𝑋𝑋 |𝑇𝑇)��
−1

                                           [9𝑉𝑉]           

𝐶𝐶𝛼𝛼1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝑇𝑇) )]−1. 12                                    [9𝑏𝑏]            

The two-sample two-step estimator with an invalid instrument 

 Let’s now assume that estimation is not based on the valid instrument 𝑇𝑇 but on the 

invalid instrument 𝑻𝑻, and that although A4 does not hold it is the case that: 

    𝐴𝐴3′.  𝜸𝜸𝟏𝟏 > 0         

         𝐴𝐴4′.  𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) > 0.                                         
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(Throughout I use bold font to indicate that a parameter, expression or variable pertains to the 

analysis with the invalid instrument.) As 𝜸𝜸𝟏𝟏 > 0 if and only if ln𝑋𝑋 and T are positively 

correlated, in the “long-run context” A3’ and A4’ are equivalent to the standard assumption that 

the (invalid) instruments typically available to mobility scholars are positively correlated with 

the logarithm of parental income and with the error term of the PRF of interest.  

In order to determine the implications of A3’ and A4’, it is useful to rewrite the 

counterparts to Equations [7] and [7’] as follows: 

𝐸𝐸(𝒀𝒀|𝒕𝒕) = exp�𝜶𝜶𝟎𝟎′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝒕𝒕)�                                 [10] 

𝐸𝐸(𝒀𝒀|𝒕𝒕) ≅ exp�𝜶𝜶𝟎𝟎′′ + 𝛼𝛼1𝐸𝐸(ln𝑋𝑋 |𝒕𝒕)� ,                              [10′] 

where  𝒀𝒀 ≡ 𝑌𝑌 − 𝐸𝐸(Ψ|𝑻𝑻). Now, making use again of the approximated closed-form expression 

introduced above, we may write: 

𝛼𝛼1 ≅ 𝑪𝑪𝛼𝛼1 − ��𝑪𝑪𝛼𝛼1�
2
− 𝑽𝑽𝛼𝛼1�

1
2 ,                                           [11]           

where  

𝑽𝑽𝛼𝛼1 = 2 �𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)��
−1

                                           [11𝑉𝑉]           

𝑪𝑪𝛼𝛼1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝒀𝒀,𝐸𝐸(ln𝑋𝑋 |𝑻𝑻) )]−1                                                               

=  �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)� − 𝐶𝐶𝐶𝐶𝐶𝐶�𝐸𝐸(Ψ|𝑻𝑻),𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)��
−1

 

=  �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)� − 𝜸𝜸𝟏𝟏𝐶𝐶𝐶𝐶𝐶𝐶(𝐸𝐸(Ψ|𝑻𝑻),𝑻𝑻)�
−1

             

 =  �𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)� − 𝜸𝜸𝟏𝟏𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻)�
−1

. 13     [11𝑏𝑏]    

Actual estimation, however, is not based on 𝒀𝒀 but on 𝑌𝑌, which is equivalent to making 

𝜸𝜸𝟏𝟏𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) = 0. As assumptions A3’ and A4’ entail that 𝜸𝜸𝟏𝟏𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) > 0, while it is the case 

that  𝜕𝜕𝛼𝛼1
𝜕𝜕𝑪𝑪𝛼𝛼1  

< 0 (see Mitnik 2017a:16 and Appendix, B), it follows that the probability limit of the 
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two-sample two-step estimator of the IGE of the expectation with the invalid instruments 

typically available to mobility scholars is larger than the true parameter. This is the same 

conclusion that is obtained for the conventional IGE when the latter is estimated with the 

TSTSLS estimator, also under the assumption that the samples have information on long-run 

rather than short-run income.14 

Two-sample estimation of the IGE of the expectation with short-run income variables 

In the vast majority of cases in which it is necessary to use the two-sample approach, 

only short-run income information is available. This means that the income variables are affected 

by measurement error, which in turn entails that the assumptions for consistency (and 

approximate consistency) discussed in the previous section do not suffice. Even if the 

measurement errors were classical in nature, further empirical assumptions regarding those 

errors’ relationships with the instruments would need to hold for the two-sample two-step 

estimator to be consistent. And the errors are not classical in the general case. As income- and 

earnings-age profiles differ across economic origins, using proxy measures taken when parents 

or children are too young or too old to represent lifetime differences well may result in “lifecycle 

biases” (e.g., Jenkins 1987; Harder and Solon 2006; Black and Devereux 2011; Mazumder 2005; 

Niborn and Stuhler 2016) that cannot be accounted for within the framework of the classical 

measurement-error model.  

Let 𝑍𝑍𝑙𝑙 ≥ 0 be the children’s income at age l and 𝑆𝑆𝑘𝑘 > 0 be the parents’ income at age k; 

without any loss of generality I assume that 𝐸𝐸(𝑍𝑍𝑙𝑙) = 𝐸𝐸(𝑆𝑆𝑘𝑘) = 1. 15
P The first-step equation is the 

population linear projection 

ln 𝑆𝑆𝑘𝑘 = 𝛾𝛾�0 + 𝛾𝛾�1𝐷𝐷 + 𝑄𝑄𝑘𝑘,           
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where 𝐷𝐷 is a generic instrument, i.e., an instrument that may or may not be valid. To simplify the 

presentation (more on this later), let’s assume:  

𝐴𝐴5.  𝐸𝐸(𝑄𝑄𝑘𝑘|𝑑𝑑) = 0                                        

 𝐴𝐴6.  𝛾𝛾�1 ≠ 0.                                                   

Under these assumptions, the second-step equation may be written as: 

𝐸𝐸(𝑍𝑍𝑙𝑙|𝑑𝑑) = 𝛼𝛼�0 + 𝛼𝛼�1𝐸𝐸(ln 𝑆𝑆𝑘𝑘 |𝑑𝑑). 

Then, using again the approximated closed-form expression employed before, we have: 

𝛼𝛼�1 ≅ 𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�
2
− 𝑉𝑉𝛼𝛼�1�

1
2 ,                                       [12]        

where 

𝑉𝑉𝛼𝛼�1 = 2 �𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸(ln 𝑆𝑆𝑘𝑘 |𝐷𝐷)��
−1

                                        [12𝑉𝑉]       

𝐶𝐶𝛼𝛼�1 = �𝐶𝐶𝐶𝐶𝐶𝐶�𝑍𝑍𝑙𝑙 ,𝐸𝐸(ln 𝑆𝑆𝑘𝑘 |𝐷𝐷)��
−1

. 16                                 [12𝑏𝑏]       

In this section I specify a set of measurement-error and lifecycle assumptions under 

which 𝛼𝛼�1 is equal to 𝛼𝛼 when the instrument is valid, and is larger than 𝛼𝛼 with the instruments 

typically available. To this end I advance a generalized error-in-variables model for the 

estimation of the IGE of the expectation in the two-sample context, or GEiVE-TS model. In 

addition to making the needed measurement-error assumptions explicit, this model allows to 

determine the potential effects of lifecycle biases.  

Assumptions of the GEiVE-TS model 

In order to introduce the assumptions of the GEiVE-TS model, it is necessary to first 

introduce the following population linear projections: 

𝑍𝑍𝑙𝑙 = 𝜃𝜃0𝑙𝑙 + 𝜃𝜃1𝑙𝑙  𝑌𝑌 + 𝑊𝑊𝑙𝑙                                                [13]                     

ln  𝑆𝑆𝑘𝑘 = 𝜋𝜋0𝑘𝑘 + 𝜋𝜋1𝑘𝑘 ln𝑋𝑋 + 𝑃𝑃𝑘𝑘  ,                                  [14]                     
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where 𝑍𝑍𝑙𝑙 and Y are as defined earlier; 𝜃𝜃0𝑙𝑙 + 𝑊𝑊𝑙𝑙 is the (additive) measurement error in the short-

run measure as a proxy for the long-run measure when 𝜃𝜃1𝑙𝑙 = 1; 𝜃𝜃1𝑙𝑙 captures left-hand lifecycle 

bias and thus may be different from one and varies with l; 𝑆𝑆𝑘𝑘 and 𝑋𝑋 are as defined earlier; 𝜋𝜋0𝑘𝑘 +

𝑃𝑃𝑘𝑘 is the (additive) measurement error in the logarithm of the short-run measure as a proxy for 

the logarithm of the long-run measure when 𝜋𝜋1𝑘𝑘 = 1; and 𝜋𝜋1𝑘𝑘 captures right-hand lifecycle bias 

and thus may be different from one and varies with parents’ age.17  

The empirical assumptions of the GEiVE-TS model are the following: 

𝐺𝐺1.𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑙𝑙,𝐷𝐷) = 0                                        

𝐺𝐺2.𝐸𝐸(𝑃𝑃𝑘𝑘|𝑑𝑑) = 𝐸𝐸(𝑃𝑃𝑘𝑘).                                     

These assumptions are similar, but not identical, to those made by the available generalized 

error-in-variables models for the IV estimation of IGEs—both the IGE of the geometric mean 

and the IGE of the expectation—in the one-sample context (see Mitnik 2017b). The fact that 

Equation [14] is a linear projection entails that 𝐸𝐸(𝑃𝑃𝑘𝑘) = 0, so it follows that 𝐸𝐸(𝑃𝑃𝑘𝑘|𝑑𝑑) = 0. 

Assumptions M1 and M2 are expected to hold imperfectly but still as good approximations, at 

least when 𝜃𝜃1𝑙𝑙 ≅ 𝜋𝜋1𝑘𝑘 ≅ 1.   

Conditions for consistency and upward inconsistency of the short-run estimator 

In what follows I omit the subscripts l and k to simplify the notation. Using Equations 

[13] and [14], Equations [12a] and [12b] may be written as: 

   𝑉𝑉𝛼𝛼�1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋1𝐸𝐸(ln𝑋𝑋|𝐷𝐷) + 𝐸𝐸(𝑃𝑃|𝐷𝐷))]−1                                                                

𝐶𝐶𝛼𝛼�1 = �𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌,𝐸𝐸(ln 𝑆𝑆 |𝐷𝐷)� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑊𝑊,𝐸𝐸(ln 𝑆𝑆 |𝐷𝐷)��
−1

                                      

           = �𝜃𝜃1𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌,𝐸𝐸(ln𝑋𝑋 |𝐷𝐷)� + 𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝐸𝐸(𝑃𝑃|𝐷𝐷)) + 𝛾𝛾�1𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝐷𝐷)�
−1

.       

Under assumptions M1 and M2, 𝐶𝐶𝛼𝛼1and 𝑉𝑉𝛼𝛼1 reduce to: 

  𝑉𝑉𝛼𝛼�1 = 2 [(𝜋𝜋1)2𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(ln𝑋𝑋|𝐷𝐷))]−1                                                          [15𝑉𝑉]           
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  𝐶𝐶𝛼𝛼�1 = [𝜃𝜃1𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝐸𝐸(ln𝑋𝑋|𝐷𝐷))]−1.                                                          [15𝑏𝑏]          

If, in addition, 𝜋𝜋1 = 𝜃𝜃1 = 1, 𝑉𝑉𝛼𝛼1 and 𝐶𝐶𝛼𝛼1further reduce to 

𝑉𝑉𝛼𝛼�1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(ln𝑋𝑋|𝐷𝐷))]−1.                                                                    [16𝑉𝑉]        

𝐶𝐶𝛼𝛼�1 = [𝐶𝐶𝐶𝐶𝐶𝐶( 𝑌𝑌,𝐸𝐸(𝐷𝐷))]−1.                                                                           [16𝑏𝑏]        

 Before discussing the implications of Equations [12], [16a] and [16b], I will show that, if 

the assumptions of the GEiVE model hold and 𝜋𝜋1 = 𝜃𝜃1 = 1, then: 

(a) Assumption A1 entails assumption A5, and 

(b) Each of assumptions A3 and A3’ entails A6.  

First, using that 𝐸𝐸(ln 𝑆𝑆) = 𝐸𝐸(ln𝑋𝑋) = 1 and 𝜋𝜋1 = 1 entail that 𝜋𝜋0 = 0, that assumption M2 

implies that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃,𝐷𝐷) = 0, and Equation [14], we have: 

𝛾𝛾�1 =
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 ,𝐷𝐷)
𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)

=
𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝐷𝐷) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃,𝐷𝐷)

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)
=
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝐷𝐷)
𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷)

= 𝛾𝛾1 

𝛾𝛾�0 = 𝐸𝐸(ln 𝑆𝑆) − 𝛾𝛾�1𝐸𝐸(𝐷𝐷) = 𝜋𝜋0 + 𝜋𝜋1𝐸𝐸(ln𝑋𝑋) − 𝛾𝛾�1𝐸𝐸(𝐷𝐷) = 𝐸𝐸(ln𝑋𝑋) − 𝛾𝛾1𝐸𝐸(𝐷𝐷) = 𝛾𝛾0. 

As 𝛾𝛾�1 = 𝛾𝛾1, each of A3 and A3’ guarantees that A6 holds as well. Second, we may now write 

ln 𝑆𝑆 = 𝛾𝛾0 + 𝛾𝛾1𝐷𝐷 + 𝑄𝑄 = ln𝑋𝑋 + 𝑃𝑃, 

which indicates that 𝑅𝑅 = Q − P. Then, as E(P|d) = 0 (per assumption M2), it follows that 

assumption A1, 𝐸𝐸(𝑅𝑅|𝑑𝑑) = 0, guarantees that 𝐸𝐸(𝑄𝑄|𝑑𝑑) = 0 as well. Therefore, if both M1 and M2 

hold and 𝜋𝜋1 = 𝜃𝜃1 = 1, Equations [16a] and [16b] follow as long as A1 and either A3 or A3’ 

hold.  

 Now, let’s assume that Equations A1, A2 or A2’, A3 and A4 hold, that is, let’s consider 

the case in which the instrument is valid. Comparing Equations [12], [16a] and [16b] with 

Equations [9], [9a] and [9b] makes clear that in this scenario the “short-run estimator” (the two-

sample two-step estimator with short-run income variables) is a consistent (or approximately 
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consistent) estimator of the IGE of the expectation as long as (a) the measurement-error 

assumptions 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝑇𝑇) = 0 and 𝐸𝐸(𝑃𝑃|𝑡𝑡) = 𝐸𝐸(𝑃𝑃) hold, and (b) the short-run variables pertain to 

the “right points” of the children’s and parents’ lifecycles, that is, they pertain to when 𝜋𝜋1 =

𝜃𝜃1 = 1 (more on this below).  

Let’s consider next the case in which the instrument is invalid because A4 does not hold, 

but A3’ and A4’ do hold. Comparing now Equations [12], [16a] and [16b] with Equations [11], 

[11a] and [11b] shows that, under the same measurement-error and lifecycle assumptions, the 

short-run estimator is upward inconsistent with the invalid instruments typically available to 

mobility scholars.18 

Lifecycle biases 

As indicated earlier, using proxy income measures taken when parents or children are too 

young or too old to represent lifetime differences well may result in lifecycle biases. When 𝜋𝜋1 

and 𝜃𝜃1 are not equal to one, Equations [15a] and [15b] still hold if we assume that A5 and A6 

hold.19 For the purposes here, it is more convenient to write Equation [12] and those two 

equations as follows: 

𝛼𝛼�1 ≅
1
𝜋𝜋1
�𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�

2
− 𝑉𝑉𝛼𝛼�1�

1
2� ,                                    [17]        

where 

𝑉𝑉𝛼𝛼�1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸(ln𝑋𝑋|𝐷𝐷))]−1                                                [17𝑉𝑉]       

𝐶𝐶𝛼𝛼�1 = [𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝐸𝐸(ln𝑋𝑋|𝐷𝐷))]−1.                                          [17𝑏𝑏]       

With the equations written this way, it is easy to see the implications of the GEiVE-TS model for 

the lifecycle biases that may affect the estimation of the IGE with short-run income variables.  
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Indeed, income-age profiles vary in a well-known manner across people with different 

levels of human capital, which leads to the hypothesis that 𝜃𝜃1 and 𝜋𝜋1 will increase with 

children’s and parents’ ages, respectively, and that they will be smaller than one when the 

children or parents are younger and larger than one when they are older (Harden and Solon 

2006). Moreover, this hypothesis has received empirical corroboration both for 𝜋𝜋1 (Harden and 

Solon 2006; Nybom and Stuhler 2016; Mitnik 2017a and 2017b) and 𝜃𝜃1 (Mitnik 2017a), with the 

“measurement-error slopes” approaching the value one when the parents and children, 

respectively, are close to 40 years old. Using this information, a comparison of Equations [17], 

[17a] and [17b] with Equations [9], [9a] and [9b], and with Equations [11], [11a] and [11b], 

allows to predict the directions of the lifecycle biases.  

To simplify the analysis—and as Solon and Harder (2006) did in their analyses of 

lifecycle biases in the OLS estimation of the IGE of the geometric mean—I will consider the 

GEiVE-TS model’s implications regarding left-side and right-side lifecycle biases separately. 

Thus, I first assume that 𝜋𝜋1 = 1, so as to focus on left-side lifecycle bias exclusively. As  𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

<

0 and 
𝜕𝜕𝐶𝐶𝛼𝛼�1
𝜕𝜕𝜃𝜃1

< 0, it follows that the short-run estimator can be expected to be downward 

inconsistent when the children are too young (i.e., when 𝜃𝜃1 < 1) and upward inconsistent when 

they are too old (i.e., when 𝜃𝜃1 > 1), as long as the instrument is valid. With the instruments 

typically available, using measures of children’s income pertaining to when they are older can be 

expected to exacerbate the amplification bias associated to the use of invalid instruments, while 

using measures pertaining to when they are younger can be expected to reduce that amplification 

bias (if 𝜃𝜃1 is small enough, the use of these measures could even more than compensate for the 

upward bias generated by the invalid instruments). 
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 I now assume that 𝜃𝜃1 = 1, so as to focus on right-side lifecycle bias exclusively. It then 

follows that, with a valid instrument, 𝛼𝛼�1 =  𝛼𝛼1
𝜋𝜋1

, that is, that the probability limit of the short-run 

estimator is 1
𝜋𝜋1

 times the value of the true parameter. This means that we can expect the estimator 

to be upward inconsistent when the parents are too young (i.e., when 𝜋𝜋1 < 1) and downward 

inconsistent when they are too old (i.e., when 𝜋𝜋1 > 1). With the invalid instruments typically 

available, the probability limit of the estimator when the parents are too young will be larger than 

1
𝜋𝜋1

 times the true parameter, thus exacerbating the amplification bias associated to the use of 

invalid instruments. When parents are too old, the probability limit will be smaller that 1
𝜋𝜋1

 times 

the true parameter (in fact, if 𝜋𝜋1 is large enough, this may more than compensate for the 

amplifying effect of using an invalid instrument).  

 More generally, using measures of parents’ income pertaining to when they are younger 

(older) should contribute to overestimating (underestimating) the IGE of expected income, while 

using measures of children’s income pertaining to when they are younger (older) should 

contribute to underestimating (overestimating) that IGE. Whether the probability limit of the 

short-run estimator is actually larger or smaller than the true parameter will in each case depend 

on the values of both measurement-error slopes and on whether the instrument is valid or not. In 

particular, the standard conclusion that two-sample IGE estimates are upward biased (given the 

instruments typically available) only follows if the short-run income variables satisfy some 

conditions: The parental variable has to pertain to an age at which 𝜋𝜋1 ≤ 1, while the children 

variable has to pertain to an age at which 𝜃𝜃1 ≥ 1. Given an invalid instrument, the optimal upper-

bound estimates in term of tightness, among those that the GEiV-TS model predicts will be 

upper biased, can be expected to be those obtained when 𝜋𝜋1 = 𝜃𝜃1 = 1. 
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Transforming the two-sample two-step estimator into a two-sample GMM estimator 

In the one-sample context, and following the approach first advanced by Newey (1984), a 

two-step estimator—where the estimator in the second step is itself an M-estimator or a GMM 

estimator that depends on the first-step estimator—can be easily transformed into a GMM two-

equation estimator (where the two equations are estimated simultaneously). To do so, the first-

order conditions for the two equations are “stacked,” so that the first-order conditions for the full 

GMM problem reproduce the first-order conditions of the estimators employed in each step.  

There are two main advantages to using this approach. First, the GMM estimator only 

involves standard asymptotic inferential procedures, while the two-step estimator requires to 

account for the two-step nature of the estimation by using more complicated closed-form 

asymptotic variance estimators (e.g., Murphy and Topel 1985; Hardin 2002), or resampling 

methods. Second, transforming the two-step estimator into a GMM estimator ensures efficient 

estimation (see Wooldridge 2002:425 and ff. for more details). As efficiency is achieved by 

weighting instruments in an optimal way, in finite samples the two-step and GMM estimators 

will produce identical estimates when there is only one instrument, but will generally produce 

somewhat different estimates when there are multiple instruments. 

 With a minor modification, the same approach can be used to transform the two-sample 

two-step predictor-substitution estimator of the exponential regression model introduced above 

into a two-sample two-equation GMM estimator.20 Let’s estipulate that the “first equation” is the 

equation from the first step, and the “second equation” is the equation from the second step. 

Then a two-sample GMM estimator of the IGE of the expectation, where the moment conditions 

are products of instruments and “modified residuals,” is obtained as follows: (a) replace the 

missing information in each of the samples—the logarithm of parents’ income in the main 
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sample, children’s income in the auxiliary sample—by any value, e.g., zero, (b) stack the data 

from the two samples into one sample, adding an indicator variable to identify the observations 

from the auxiliary sample, (c) define the modified residuals entering the moment conditions 

associated to the first equation as the usual residuals multiplied by the indicator variable, (d) 

define the modified residuals entering the moment conditions associated to the second equation 

as the usual residuals multiplied by one minus the indicator variable, and (e) estimate the two-

equation model by GMM in the usual way.  

The key steps are (c) and (d). The modified residuals defined in those steps are equal to 

the usual residuals for the observations in the equation-dependent “relevant sample” but are 

always equal to zero—regardless of the value of the parameter vector—for the observations in 

the equation-dependent “irrelevant sample.” Therefore, estimation can proceed as in the one-

sample context. The resulting estimator is the GMM-E-TS estimator. 

Empirical analyses 

 In this section I empirically assess the performance of the two-sample estimation 

approach advanced in the previous sections, test the predictions of the measurement-error model 

regarding lifecycle biases, and provide evidence that two-sample estimates of the IGE of the 

expectation are, as expected, upward biased when the short-run variables pertain (a) to the ages 

at which the measurement-error slopes are exactly one, and (b) to when parents and children are 

close to 40 years old. I also provide empirical information on the absolute and relative 

magnitudes of the resulting biases. The empirical analyses are preceded by a brief description of 

the data used and of some estimation details. 
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Data and estimation 

The empirical analyses are based on a PSID sample that makes it possible to construct an 

approximated measure of long-run parental income but not of children’s long-run income.21 

However, as I explain below, this sample still allows to shed light on the key questions of 

interest for this paper. The sample includes information on children born between 1966 and 

1974, for which 25 years of parental data centered on age 40 (pertaining to when the children 

were between 1 and 25 years old) are available. Children observed in the PSID when they were 

between 35 and 38 years old are included in the sample. I use information on the average family 

income of children when they were 35-38 years old, on parents’ family income, age, and years of 

education when the children were 1-25 years old, and on fathers’ occupation when the children 

were growing up (as reported by the latter). I do not use information on individual earnings 

because I only estimate the IGE of family income. Table 1 presents descriptive statistics, while 

the Appendix provides additional details on the sample and variables and explains why I focus 

exclusively on the family-income IGE. 

In order to conduct two-sample analyses, I proceed as follows: (a) I duplicate the PSID 

sample; (b) I replace parental income values by missing values in the original sample, which I 

use as the main sample; and (c) I replace children’s income values by missing values in the 

second sample, which I use as the auxiliary sample. Proceeding this way is very advantageous, as 

it allows to address the questions of interest for this paper cleanly, without having to worry about 

the effects of the data not satisfying the “common-population assumption,” or of sheer sampling 

variability even when that assumption is satisfied.22 

I use the PPML and GMM-IVP estimators to estimate the IGE of the expectation in the 

one-sample context, and the GMM-E-TS estimator to estimate it in the two-sample context.23 I 
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employ the following instruments when estimation is based on the GMM-IVP or the GMM-E-TS 

estimators: (a) parents’ total years of education when the child was 13 years old, (b) the 

household head’s years of education when the child was 13 years old, (c) the father’s occupation, 

and (d) the father’s occupation and either the parents’ or the household head’s education.24 Reiss 

(2016) has shown that, in IV estimation, the functional form chosen for the instruments may be 

very consequential in some cases, so I also use second-degree polynomials on the parental 

education variables as instruments. I employ sampling weights and compute cluster-robust 

standard errors in all cases.25  

The relationship between long-run and short-run income measures varies with the age at 

which income is measured; for this reason, it is customary to include polynomials on children’s 

and parents’ ages as controls when estimation is based on short-run measures. However, as all 

IGE estimates I report pertain to a sample in which the variation in children’s ages is very small, 

controlling for children’s age is unnecessary (see the next paragraph for a second reason for 

proceeding this way). Mitnik et al. (2015:34) have argued that the age at which parents have their 

children is not exogenous to their income, that parental age is causally relevant for their 

children’s life chances, and that insofar as we want persistence measures to reflect the gross 

association between parental and children’s income we should not control for parental age. Here 

I present estimates from models without controls for parental age, but there is consistent 

evidence that estimates from models with and without such controls are very similar (see Mitnik 

2017a; Mitnik 2017b).  

As a measure of the long-run family income of children is not available, in all analyses, 

regardless of whether they pertain to short-run or long-run IGEs, I use the family income of 

children when they were 35-38 years old as their income measure. This is equivalent to making 
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𝜃𝜃1 = 1, W = 0 (for all children), and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇, W) = 0 by construction. As a result, in the 

empirical analyses I am not able to assess any aspect of the GEiVE-TS model pertaining to left-

side measurement error. Nevertheless, I can still draw clear conclusions regarding right-side 

measurement error, the key question of whether the two-sample estimation approach advanced in 

this paper provides upper-bound estimates of the IGE of the expectation with the instruments 

typically available to mobility scholars, and several other issues of interest. 

Results 

Figures 1 to 4 allow to assess the qualitative implications of the GEiVE-TS model, and 

whether the two-sample estimation approach advanced here works as expected. Each figure 

includes two panels. The results shown in each of these panels are based on a different set of 

short-run measures of parental income. In the left panels, parental income pertains to when the 

children were 1 or 2 or 3 . . . up to 25 years old. In the right panels, the short-run measures of 

parental income are five-year averages centered when the children were 3 or 4 . . . up to 23 years 

old. The age in the horizontal axis is in all cases the average age of the parents in the sample. The 

descending curves in each panel show the relationship between short-run two-sample or short-

run one-sample IGE estimates and parents’ average age, while the ascending curve shows the 

relationship between estimates of the parental measurement-error slope 𝜋𝜋1 and that age. In 

Figures 1 and 2 the instruments are, respectively, the parents’ and the household head’s years of 

education. In Figure 3 the instruments are indicator variables for father’s occupation, while in 

Figure 4 both these variables and parents’ education are used to instrument parental income. In 

all figures, when the short-run income measures rely on five years of information, the estimates 

become less affected by transitory income fluctuations and the shapes of the curves become 

clearer.26  
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Tables 2, 3 and 4 present IGE estimates obtained with short-run measures of parental 

income and with the long-run income measure, and compare the short-run and long-run 

estimates. Table 2 reports the results obtained with what I will refer as the “ideal estimation 

strategy,” as it displays IGE estimates pertaining to the parental ages at which the measurement-

error slope is equal to one. Those estimates are computed by interpolation, and therefore standard 

errors are not available. Table 3 shows estimates based on measures of parental income centered 

on the years the children were 13 years old, when the average age of the parents is close to 40. 

Assessing the performance of the two-sample estimation approach in this context is of eminent 

practical interest, as mobility scholars normally do not know the ages at which the measurement-

error slopes are equal to one with their data. So, when possible with those data, they simply use 

estimates based on income measures taken when parents and children are close to age 40 as their 

best guess (a guess informed by the results obtained with other datasets). I will refer to the two-

sample estimation approach implemented this way as the “feasible estimation strategy.”27 

Figures 1 to 4 and Tables 2 and 3 allow to compare IGE estimates obtained with the one-

sample and two-sample estimators. When conducting these comparisons, it’s important to keep 

two facts in mind. First, under the assumptions discussed in this paper, the probability limit of 

the two-sample estimator is the same as the probability limit of the one-sample estimator when 

the measurement-error slopes 𝜋𝜋1and 𝜃𝜃1are equal to one and the instruments are valid, but not 

necessarily at other values of those slopes or when the instruments are invalid. Second, even 

when the probability limits of two estimators are identical, actual estimates based on finite 

samples may still be different. Therefore, we should not expect estimates generated with the one- 

and two-sample estimators to be the same, even when they rely on the same instrument or 

instruments, and on the same measure of parental income. Comparing the estimates obtained 
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with the one-sample and two-sample estimators is nevertheless informative, and may provide a 

useful reference for other empirical research, e.g., for comparative research across countries that 

differ in the types of data they have available to estimate the IGE.  

As discussed earlier, there are good reasons to expect 𝜋𝜋1 to increase with parental age, 

and to be smaller than one when the parents are younger and larger than one when the parents are 

older, regardless of the short-run measure of parental income employed. Figures 1 to 4 confirm 

these expectations. They also indicate that the measurement-error slopes are equal to one when 

the parents are, on average, somewhat younger than 40, and that they are somewhat larger than 

one at age 40 (see Tables 2 and 3 for the exact ages and slope values, respectively). In addition, 

and fully consistent with the GEiVE-TS model’s predictions, the figures also show a clear 

inverse relationship between the two-sample IGE estimates and the estimates of the 

measurement-error slopes, with the latter increasing and the former falling at similar paces with 

the parents’ average age. Importantly, the IGE curves are (approximately) convex to the origin. 

The IGE estimates are very large when the parents are younger—i.e., when they are close to 30 

years old—and tend to fall very rapidly up to age 40. However, after that they tend to fall slowly 

or to stabilize. With each instrument (or set of instruments) and income measure used, the shape 

of the two-sample curve is very similar to the shape of the corresponding one-sample curve. 

With instruments other than parents’ education, and in particular with father’s occupation, the 

two-sample curves tend, however, to be above their one-sample counterparts. 

In all figures and tables, the long-run IGE—represented in the figures by the darker-gray 

horizontal lines—is the IGE of the family income of children, when they were 35-38 years old, 

with respect to the (approximated) long-run family income of their parents. As explained earlier, 

for the purposes of the analyses here the former income is assumed to be the long-run income of 
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children. Moreover, given what we know from previous research about the children’s ages at 

which 𝜃𝜃1 = 1 (Mitnik 2017a), it is likely that the 0.6 value reported as the long-run IGE estimate 

in the figures and tables is quite close to the estimate that would be obtained if the long-run 

income of children were available.  

Comparing the two-sample IGE curve in each panel of each figure to the long-run IGE 

line makes apparent that the ideal estimation strategy works as expected: In each of the eight 

panels, the two-sample IGE estimate when the measurement-error slope is equal to one (a) 

bounds the estimate of the long-run IGE from above, and (b) provides a tighter upper bound than 

all estimates pertaining to ages at which the measurement-error slope is smaller than one. The 

first point is also apparent in Table 2, which also includes results obtained by instrumenting 

parental income with second-degree polynomials on each of the education variables, and with 

father’s occupation and the household head’s education together. The table also makes clear that 

the two-sample IGE estimates obtained when the measurement-error slopes are equal to one vary 

substantially across instruments, with some instruments generating much tighter upper bounds 

than others, and that the observed variation is very highly correlated across the two short-run 

measures of parental income. Using parents’ education, a second-degree polynomial on parents’ 

education,  or parents’ education together with father’s occupation as instruments generates the 

tightest bounds, while instrumenting the short-run income measures with the education of the 

household-head (alone, or via a second-degree polynomial) provides the loosest bounds by a 

wide margin. The upper bounds obtained in the other two cases are in between, but are closer to 

those obtained with parents’ education. The “ranking” of the estimates across instruments (in 

terms of the tightness of the bounds they supply) is somewhat different in the one sample-
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context, although it is still the case that estimates based on the education of the household head 

provide, by far, the loosest bounds.  

Crucially, the figures and Table 3 indicate that a very similar analysis applies when we 

focus on the results of estimating the IGE with the feasible estimation strategy. Although all two-

sample estimates are smaller close to age 40 than at the ages at which the measurement-error 

slopes are equal to one—the “feasible estimates” are, on average across instruments and 

measures of parental income, about 12 percent smaller than the “ideal estimates”—the former 

still bound the long-run estimate from above with all instruments. (In fact, the two-sample 

estimates bound the long-run estimate from above at all or nearly all parental ages considered in 

the analysis, i.e., when the average age of the parents is between 29 and 53.) Table 4 presents the 

absolute and percent differences between the two-sample feasible estimates and the long-run 

estimate of the IGE. Depending on the instruments employed, the two-sample estimates are 

between 12.5 and 51.9 percent larger than the long-run estimate with the annual measure of 

parental income, and between 17.2 and 54.3 percent larger with the five-year measure. This wide 

variation in IGE estimates across instruments is not specific to the two-sample estimation of the 

IGE of the expectation. Indeed, Table 3 shows that the one- and two-sample estimates vary 

similarly across instruments (see also Table 2). Moreover, estimating the IGE of the geometric 

mean, in both the one-sample and the two-sample contexts, also generates a wide range of 

estimates.28 The observed variation in estimates is a consequence of the fact that the instruments’ 

degree of endogeneity and the strength of their correlations with the logarithm of long-run 

parental income (relative to their variances) both differ across instruments. 
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Discussion 

The results of the empirical analyses indicate that the estimation approach advanced in 

this paper works as expected, and that the GEiVE-TS model provides a very good account of the 

relationship between the long-run IGE, the short-run IGE estimates generated by the two-sample 

GMM estimator, and the parents’ ages at which their income is measured. Most crucially, the 

results show that both the ideal and the feasible estimation strategies work as the formal analysis 

leads us to expect.  

The GEiVE-TS model entails that IGE estimates based on measures of parents’ income 

obtained when they are younger should be larger than those based on measures obtained when 

they are older. Therefore, it is not surprising that estimates relying on annual measures of 

parents’ income pertaining to their early 30s are larger than both the ideal and the feasible 

estimates, which pertain to when the parents were 37 and 40 years old, respectively. Likewise, 

different invalid instruments can be expected to be differentially correlated to the logarithm of 

long-run parental income, and to the error term of the long-run population regression function of 

interest. Therefore, it is not surprising that they lead to different upper-bound estimates of the 

IGE. Nevertheless, the magnitude of the differences revealed by the empirical analyses —across 

parental ages in the first case, across instruments in the second—is quite striking.  

The foregoing suggests the following approach for estimating the IGE of the expectation 

with short-run income measures in the two-sample context. First, whenever possible, mobility 

scholars should use a short-run measure of parental income pertaining to when the parents were 

about 40 years old. If this is not possible, measures obtained when parents were somewhat older 

should be strongly preferred to measures obtained when parents were somewhat younger. This is 

so because the empirical results suggest that the IGE estimates become much less informative in 
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the latter case, while estimates based on measures pertaining to somewhat older ages are likely to 

still bound the long-run IGE from above.  

Second, mobility scholars should estimate the IGE using a variety of instruments, and 

then select the estimate that provides the tightest bound as the preferred estimate. Under this 

approach, searching for “best invalid instruments”— e.g., looking for additional instruments 

beyond those typically employed, using multiple instruments simultaneously, and exploring the 

effects of alternative functional forms—may have a large payoff.  

Conclusion  

The IGE conventionally estimated in the mobility literature pertains to the conditional 

geometric mean of children’s income, which is at odds with all the interpretations imposed on its 

estimates. In addition, the conventional IGE makes studying gender and marriage dynamics in 

intergenerational processes a very difficult enterprise, and leads to IGE estimates affected by 

(potentially severe) selection biases. For these reasons, Mitnik and Grusky (2017a) have called 

for replacing that IGE by the IGE of the expectation. As in many countries the only information 

available for the estimation of intergenerational elasticities is short-run income variables drawn 

from two independent samples, making the IGE of the expectation the workhorse 

intergenerational elasticity—as Mitnik and Grusky propose—requires that the methodological 

knowledge necessary to estimate it with this information is made available. 

In this paper, I have made three contributions to this goal. I have put forth a two-sample 

GMM estimator of the exponential regression model, the GMM-E-TS estimator, which can be 

employed to estimate the IGE of the expectation. The estimator may be used both with data 

obtained through simple random sampling and with data that are the result of a complex 

sampling design. Moreover, because the GMM-E-TS estimator is a two-equation rather than a 
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two-step estimator, the computation of standard errors only involves standard formulas. 

Therefore, the estimator may be used widely and easily, and is very well suited for playing for 

the estimation of the IGE of the expectation the role that the TSTSLS estimator has played for 

the estimation of the conventional IGE.  

I also have advanced a generalized error-in-variables model for the estimation of the IGE 

of the expectation with the GMM-E-TS estimator and short-run income measures. This model 

provides an account of the relationship between the long-run IGE, the ages at which children’s 

and parents’ incomes are measured, and the probability limit of the GMM-E-TS estimator with 

short-run income variables and with both valid and invalid instruments. A central implication of 

the model is that when the measurement-error slopes are equal to one, estimation of the IGE of 

the expectation with that estimator and the instruments typically available can be expected to 

provide upper-bound estimates of the long-run IGE.  

Lastly, I have used PSID data to assess the performance of the estimation approach 

developed in the paper. The empirical results indicate that the estimator works as expected, and 

that the observed lifecycle and amplification biases are in close agreement with the qualitative 

predictions of the formal analysis. They also provide support for the hypothesis that 

measurement-error slopes are equal to one close to age 40, and show that although estimates 

generated with the invalid instruments typically available to mobility scholars all bound the long-

run IGE from above, they vary substantially across instruments. This suggests that, in addition to 

using short-run income measures obtained as close to age 40 as possible—so as to minimize 

lifecycle biases—mobility scholars should estimate the IGE with a variety of instruments, and 

then select the estimate that provides the tightest upper bound as the preferred estimate.  
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Appendix 

In this appendix I provide some additional details on the sample and variables used in the 

empirical analyses. 

To select the sample, and similarly to Hertz (2007), I define “child” broadly to include 

anyone of the right age reported in the PSID to be either the son, daughter, stepson, stepdaughter, 

nephew, niece, grandson or granddaughter of the household head or his wife (or long-term 

partner).29 As Hertz (2007:35) put it, “the idea is to look at the relation between children’s 

income and the income of the households in which they were raised, even if that household was 

not, or not always, headed by their mother or father.” Similarly, when the children are 1-17 years 

old, the “father” is the household head (if the head is male), while the “mother” is either the 

household head (if the head is female) or the head’s wife or long-term partner. When the children 

are older than 17, the father and mother are those determined to be the father and mother at age 

17. 

When estimating the IGE of the expectation, the dependent variable is the average family 

income of children when they were 35-38 years old. I only estimate the IGE of the children’s 

expected family income, not of their expected individual earnings. The reason is that the IGE of 

children’s individual earnings needs to be estimated separately by gender, but the available PSID 

sample is rather small, even when men and women are pooled (as I do in all analyses).  

For both parents and children, the annual measures of family income are based on the 

PSID notion of “total family income.” But as the income components the PSID used to compute 

total family income are effectively affected by top coding in the period 1970-1978 (i.e., top 

codes were not only in place but were “binding” in that period for some people), and the PSID-

computed family income for those years is based on these top-coded values, I proceeded as 
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follows: (a) I addressed the top-coding of all income components in 1970-1978 by using Pareto 

imputation (Fichtenbaum and Shahidi 1988), and (b) I recomputed total family income for those 

years with the Pareto-imputed component variables.  

I use as instruments the parents’ and the household head’s years of education when the 

children were 13 years old (rather than some other age) because (a) when the children are 13 

years old the average age of the parents is close to 40 years old, and (b) I am particularly 

interested in examining estimates obtained with parents’ information pertaining to when they 

were close to 40 years old. I use the household head’s years of education but not the father’s 

years of education, which is the instrument most often used in the mobility literature. I do not use 

this instrument because that would require dropping from the sample those children who grew up 

without a father, which is likely to generate selection bias. Nevertheless, if the father is present in 

the household, in the vast majority of cases he is coded as household head by the PSID. 

Therefore, the household head’s years of education is similar, but not identical, to the father’s 

years of education. I do use father’s occupation as instrument. This is not a problem because this 

variable is categorical; children that did not provide information on their fathers’ occupation 

(regardless of the reason) can be coded in a separate category, and this is what I do (see Table 1). 
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Notes

1 For detailed discussions of these generalized error-in-variables models, see Mitnik (2017a:7-12; 

2017b:8-10) and Nybom and Stuhler (2016). 

2 Using the PPML estimator does not require assuming that the dependent variable has a 

conditional Poisson (or any other particular) distribution. PML estimators are semi-parametric; 

they are consistent regardless of the actual distribution of dependent variable, provided that the 

mean function is correctly specified (Gourieroux, Monfort, and Trognon 1984).  

3 Samples of child-parents pairs in which lifetime income is observed for both generations have 

not been available in any country. 

4 Jerrim et al. (2016) point out that this has proven to be the only feasible approach in Australia, 

China, France, Japan, Italy, South Africa, Spain and Switzerland. Other countries in the same 

situation are Argentina (Jiménez and Jiménez 2009), Brazil (Dunn 2007), Chile (Núñez and 

Miranda 2011), and Ecuador, Nepal, Peru and Singapore (Grawe 2004). In a few cases a closely 

related estimator, the two-sample instrumental-variable (TSIV) estimator, has been used instead 

of the TSTSLS estimator (see Inoue and Solon 2010). 

5 The parameter 𝛽𝛽1 is (also) the IGE of the expectation only when the error term satisfies very 

special conditions (Santos Silva and Tenreyro 2006; Petersen 2017; Wooldridge 2002:17). 

6 Importantly, the methodological problems discussed in this paragraph can’t be solved by 

replacing zeros by “small values” (Mitnik and Grusky, 2017:Section III.C). 

7 This claim assumes that the model in the first step of Mullahy’s estimator is a linear model, 

which is not strictly necessary (see Mullahy 1997:Ftn. 20). 

8 This doesn’t involve any loss of generality because it can always be achieved by simply 

changing the monetary units used to measure income, i.e., by dividing the children’s income 
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variable by its mean, and the parental income variable by the exponential of the mean of its 

logarithmic values minus one. 

9 𝐸𝐸(Ψ|𝑡𝑡) = 0 follows from 𝐸𝐸(Ψ|𝑥𝑥) = 0 (see Equation [4]) and assumption A4. 

10 Assumption A2 pertains to any 𝑐𝑐 > 0, and not just to 𝛼𝛼1, in order for this identification 

condition to be feasible. (Arguably, 𝑐𝑐 ∈ (0,𝑘𝑘), with 𝑘𝑘 = 1  or perhaps 𝑘𝑘 = 2 should suffice in 

the context at hand, as we generally expect the IGE of the expectation to be in the unit interval; 

conversely, in a fully-general context A2 would need to be formulated in terms of 𝑐𝑐 ∈ ℝ. ) 

11 The estimator also is approximately consistent if, for all t, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅|𝑡𝑡) is “very small” 

(regardless of whether it is constant or not across values of T). This is essentially the assumption 

that Carroll et al. (2006) made to derive their one-sample IV estimator.   

12  Equations [9], [9a] and [9b] assume 𝐸𝐸(𝑌𝑌) = 1, which is true by hypothesis, and 

𝐸𝐸(𝐸𝐸(ln𝑋𝑋 |𝑇𝑇)) = 1. The latter follows from 𝐸𝐸(ln𝑋𝑋) = 1, which is true by hypothesis. 

13 Equation [10] assumes that 𝐸𝐸(𝒀𝒀) = 1 and that 𝐸𝐸�𝐸𝐸(ln𝑋𝑋 |𝑻𝑻)� = 1. This follows immediately 

from 𝐸𝐸(𝑌𝑌) = 1 and 𝐸𝐸(ln𝑋𝑋) = 1, which are true by hypothesis. In the last step I used 

that 𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐸𝐸(Ψ|𝑻𝑻),𝑻𝑻). Indeed, applying the law of total covariance, we may write 

𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻) = 𝐸𝐸(𝐶𝐶𝐶𝐶𝐶𝐶(Ψ,𝑻𝑻)|𝑻𝑻) + 𝐶𝐶𝐶𝐶𝐶𝐶�𝐸𝐸(Ψ|𝑻𝑻),𝐸𝐸(𝑻𝑻|𝑻𝑻)� = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐸𝐸(Ψ|𝑻𝑻),𝑻𝑻). 

14 In the case of the conventional IGE, the fact that the standard conclusion relies on 

(counterfactually) assuming that the long-run income variables are available was noted by Jerrim 

et al. (2016).  

15 See note 8.  

16 This assumes that 𝐸𝐸(𝑍𝑍) = 1 and 𝐸𝐸(𝐸𝐸(ln 𝑆𝑆𝑘𝑘 |𝐷𝐷)) = 1. The former is true by hypothesis while 

the latter follows from 𝐸𝐸(ln 𝑆𝑆𝑘𝑘) = 1, which is true by hypothesis. 

17 Importantly, as the left-side measurement error pertains to the income variable rather than its 
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logarithm, the GEiVE-TS model does not preclude that the observed income variable is equal to 

zero, and therefore children without any short-run income (e.g., children who are unemployed 

the year in which their incomes are measured) are included in all analyses. 

18 Note that as here 𝛾𝛾�1 = 𝛾𝛾1, if an instrument is valid (invalid) in the long-run context it is also 

valid (invalid) in the short-run context, and vice-versa.  

19 As I did, but in that case only to facilitate the presentation, in my derivation of those equations 

above. 

20 This is possible because the PPML estimator used in the second step is both an M-estimator 

and a GMM estimator of the exponential regression model. 

21 It is not possible to select a PSID sample that (a) has the minimum size required by those 

analyses, and (b) can be used to construct long-run income measures for parents and children 

simultaneously. 

22 A standard assumption in two-sample estimation is that the main and auxiliary samples have 

been randomly drawn from the same population (e.g., Jerrim et al. 2016). Typically, this 

assumption holds rather imperfectly in the contexts in which two-sample estimation of IGEs is 

actually carried out. Nevertheless, it is very helpful that it holds perfectly here. Indeed, if this 

were not the case the empirical results would reflect not only the performance of the GMM-E-TS 

estimator and the GEiVE-TS model, but also the differences between the populations from which 

the samples were drawn. Relatedly, even if the common-population assumption is satisfied, 

sampling variability could also lead to misleading results if any of the samples is small. 

23 I use the statistical package Stata to produce all estimates. See Author (2017) for details on the 

official and user-written commands that implement the estimators just mentioned, including the 

GMM-E-TS estimator introduced in this article. In an auxiliary analysis, whose results I report in 
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note 28, I also use the OLS estimator, the TSLS estimator, and a GMM version of the TSTSLS 

estimator to estimate the IGE of the geometric mean. In all cases in which I employ a GMM 

estimator, I use the iterative version of the estimator (with a maximum of eight iterations), as this 

likely improves efficiency in finite samples (see Hall 2005:Sec. 2.4 and 3.6).  

24 In the Appendix I explain why I use parents’ education and the household head’s education as 

instruments but not father’s education, which is the typical approach in the literature. I also 

explain why I focus on the parents’ and the household head’ education when the children were 

13 years old. 

25 Cluster-robust, and not just robust, standard errors are needed because of the way the samples 

were generated (see the previous paragraph). 

26 This is the main motivation for including five-year parental income measures—which are not 

likely to be available in the contexts in which two-sample estimation is carried out—in the 

analyses conducted here: It helps compensate, at least partially, for the small size of the samples. 

27 The tables include results obtained with all instruments mentioned earlier. However, I have not 

included in the paper figures in which the estimates rely on instrumenting short-run parental 

income with second-degree polynomials on the education variables, or with both the father’s 

occupation and the household head’s education, as they add very little information to that 

provided by the other figures.  

28 With the same sample, instruments and income measures employed to produce the results 

shown in Tables 3 and 4 (i.e., those pertaining to when the parents’ average age is close to 40), 

the percent differences between two-sample estimates of the IGE of the geometric mean of 

children’s income and the corresponding long-run estimate range, depending on the instruments 

used, from -1.9 to 33.5 percent with the annual measure of income, and from -0.6 to 39.3 percent 
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with the five-year measure. Similarly, the percent differences in one-sample estimates range 

from 8.3 to 33.5 percent (annual measure), and from 10.4 to 39.3 percent (five-year measure). 

Using a larger set of instruments, Jerrim et al. (2016) report a much larger range of variation for 

the two-sample estimates of the IGE of the geometric mean of men’s earnings with respect to 

father’s earnings.   

29 By convention, the PSID codes a man as household head and his spouse as wife, i.e., it does 

not code a woman as household head and his spouse as husband. 
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Table 1: Descriptive Statistics  (unweighted values)

Child's gender (% female) 51.8 Father's occupation (%)

Child's age Management occs. 10.2 Construction trades 10.2

Mean 36.6 Business operations specialists 0.6 Extraction workers 0.4

Standard deviation 0.6 Financial specialists 1.8 Installation, maintenance, and repair workers 7.5

Child's family income Computer and mathematical occs. 1.1 Production occupations 12.8

Mean 91,625 Architecture and engineering occs. 3.3 Transportation and material moving occs. 10.2

Standard deviation 88,398 Life, physical, and social science occs. 0.9 Military specific occupations 2.5

Average parental age Community and social services occs. 0.9 Doesn't know, refused 11.6

Mean 40.1 Legal occupations 0.4 Not applicable 1.5

Standard deviation 6.7 Education, training, and library occs. 2.7

Average parental income Arts, design, entert., sports, and media occs. 1.6

Mean 78,858 Healthcare practitioners and technical occs. 1.6

Standard deviation 64,185 Protective service occupations 2.8

Parents' years of education at child age 13 Food preparation and serving occupations 0.5

Mean 21.9 Building and grounds clean. and maint. occs. 1.5

Standard deviation 6.9 Personal care and service occs. 0.4

Household head' years of education at child age 13 Sales occupations 8.6

Mean 12.3 Office and administrative support occs. 3.0

Standard deviation 2.9 Farming, fishing, and forestry occs. 1.9

N 827

Note: Monetary values are in 2012 dollars (adjusted by inflation using the Consumer Price Index for Urban Consumers - Research Series). The average parental age and income pertain to when
the children were 1-25 years old. Father's occupation is coded as "not applicable" when there was no father/surrogate, the father was deceased, or the father never worked. To save space only
the long-run parental income variables are included in the table. The empirical analyses also employ many short-run parental income variables.
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Table 2:  Two-sample short-run estimates of the IGE of expected income when measurement-error slope is equal to one, compared to one-sample short-run 
                 estimates when measurement-error slope is equal to one, and to long-run estimate

Long-run parental income

Two samples One sample Two samples One sample
IGE of children's expected income

Short-run estimates, with short-run income instrumented by:
Parents' education 0.80 0.82 0.77 0.79
Parents' education and its square 0.79 0.83 0.78 0.80
Household head's education 0.99 0.93 0.97 0.92
Household head's education and its square 1.05 1.03 1.01 0.99
Father's occupation 0.83 0.69 0.83 0.73
Parents' education and father's occupation 0.80 0.72 0.77 0.74
Householdhead's education and father's occupation 0.87 0.74 0.85 0.78

Long-run estimate 0.60
(0.073)

Average parental age 40.5

Note: Short-run estimates were computed by interpolation. Point estimates are in bold, standard error (for the long-run estimate only) is in parentheses. The
long-run estimate was generated with the PPML estimator. The short-run one- and two-sample estimates underlying the short-run interpolated figures shown
in the table were generated with the GMM-IVP and the TS-GMM-E estimators, respectively

One year of information Five years of information
Short-run parental income

37.0 37.8
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Table 3:  Two-sample short-run estimates of the IGE of expected income when average parental age is close to 40, compared to one-sample short-run estimates
                  when average parental age is close to 40, and to long-run estimate

Long-run parental income

Two samples One sample Two samples One sample
IGE of children's expected income

Short-run estimates, with short-run income instrumented by:
Parents' education 0.69 0.72 0.71 0.73

(0.079) (0.086) (0.079) (0.083)
Parents' education and its square 0.69 0.72 0.72 0.73

(0.077) (0.083) (0.077) (0.080)
Household head's education 0.86 0.85 0.88 0.85

(0.110) (0.112) (0.106) (0.099)
Household head's education and its square 0.91 0.92 0.92 0.91

(0.102) (0.110) (0.099) (0.095)
Father's occupation 0.70 0.69 0.73 0.69

(0.085) (0.078) (0.090) (0.082)
Parents' education and father's occupation 0.67 0.69 0.70 0.69

(0.065) (0.065) (0.067) (0.066)
Householdhead's education and father's occupation 0.75 0.72 0.78 0.72

(0.074) (0.068) (0.076) (0.069)

Long-run estimate 0.60
(0.073)

Measurement-error slope (π1)

Note: Point estimates are in bold, standard errors are in parentheses. The long-run estimate was generated with the PPML estimator. The short-run one- and two-
sample estimates were generated with the GMM-IVP and the TS-GMM-E estimators, respectively. 

Short-run parental income
One year of information Five years of information

1.10 1.07
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Table 4:  Absolute and percent differences between two-sample short-run estimates when parental age is close to 40
                 and the long-run estimate of the IGE of expected income

Estimates with short-run income instrumented by: Diff % diff. Diff % diff. 
Parents' education 0.09 15.6 0.11 18.8
Parents' education and its square 0.09 15.5 0.12 20.1
Household head's education 0.26 43.6 0.28 46.8
Household head's education and its square 0.31 51.9 0.32 54.3
Father's occupation 0.10 17.5 0.13 22.6
Parents' education and father's occupation 0.07 12.5 0.10 17.2
Household head's education and father's occupation 0.15 25.5 0.18 30.8

Note: The differences indicate how much larger the two-sample short-run IGE estimates are compared to the long-run
estimate. The former were generated with the TS-GMM-E estimator. The latter was generated with the PPML estimator.

One year Five years
Parental information
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