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Abstract 
 

The fact that the intergenerational income elasticity (IGE)—the workhorse measure of economic 

mobility—is defined in terms of the geometric mean of children’s income generates serious 

methodological problems. This has led to a call to replace it by the IGE of the expectation, which 

requires developing the methodological knowledge necessary to estimate the latter with short-run 

measures of income. This article contributes to this aim. It advances a “bracketing strategy” for 

the set estimation of the IGE of the expectation that is equivalent to that used to set estimate 

(rather than point estimate) the conventional IGE with estimates obtained with the Ordinary 

Least Squares and Instrumental Variable (IV) estimators. The proposed bracketing strategy 

couples estimates generated with the Poisson Pseudo Maximum Likelihood estimator and a 

Generalized Method of Moments IV estimator of the Poisson or exponential regression model. 

To achieve its goal, the article develops a generalized error-in-variables model for the IV 

estimation of the IGE of the expectation, and compares it to the corresponding model underlying 

the IV estimation of the conventional IGE. By considering both bracketing strategies from the 

perspective of the partial-identification approach to inference, the article also specifies how to 

construct confidence intervals for the IGEs, in particular when the upper bound is estimated 

more than once with different sets of instruments. Lastly, using data from the Panel Study of 

Income Dynamics, the article shows that the bracketing strategies work as expected, and assesses 

the information they generate and how this information varies across instruments and short-run 

measures of parental income. Three computer programs made available as companions to the 

article make the set estimation of IGEs, and statistical inference, very simple endeavors. 
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Introduction 

The research on economic mobility across generations conducted in the last four decades 

has relied heavily on the intergenerational income elasticity (IGE). The IGE has been very 

extensively estimated, both to assess the levels of income and earnings mobility within countries 

(for reviews, see Solon [1999: 1778-1784]; Corak [2006]; Mitnik et al. [2018: 9-18]) and to 

conduct comparative analyses of income and earnings mobility across geographic areas, 

demographic groups and time periods (e.g., Björklund and Jäntti 2000; Chadwick and Solon 

2002; Hertz 2005, 2007; Aaronson and Mazumder 2008; Mayer and Lopoo 2008; Bloome and 

Western 2011). More recently, the IGE has also been used to examine the relationship between 

cross-sectional economic inequality and mobility across generations (e.g., Bloome 2015) and to 

study the impact of social policies and political institutions on inequality of opportunity (e.g., 

Bratsberg et al. 2007; Landersø and Heckman 2016). 

The IGE is defined in terms of the long-run incomes or earnings of parents and children 

but is almost always estimated with short-run proxy measures of income or earnings, that is, with 

variables affected by substantial measurement error. For this reason, the mobility field has been 

centrally concerned with the biases that may result and the methodological strategies that may be 

used to avoid them. Two central achievements in this regard are (a) the generalized error-in-

variables (GEiV) model for the estimation of the IGE by Ordinary Least Squares (OLS) (Haider 

and Solon 2006; see also Nybom and Stuhler 2016), and (b) the analysis of the Instrumental 

Variable (IV) estimation of the IGE with invalid instruments (Solon 1992:Appendix; see also 

Nybom and Stuhler 2011:12-14).  As I explain in detail later, these methodological analyses 

entail that if various empirical assumptions hold, then the probability limit of the OLS estimator 

of the IGE is affected by attenuation bias while the probability limit of the IV estimator is 
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affected by amplification bias and, as Solon (1992:400) first argued, “the probability limits of the 

two estimators bracket the true value” of the IGE. This means that OLS and IV estimates of the 

IGE can be combined to “bracket” or, to use the terminology typically employed in more recent 

statistical and econometric literatures (e.g., Manski 2003; Manski 2008), to set estimate, rather 

than point estimate, the IGE. In other words, instead of producing a single IGE value as estimate, 

a “bracketing strategy” produces a set or range of values deemed to contain the IGE.  

Although the IGE has long been the workhorse measure of intergenerational economic 

(i.e., earnings, income) mobility, Mitnik and Grusky (2017) have recently shown that this 

elasticity has been misinterpreted. Indeed, the IGE has been construed as pertaining to the 

expectation of children’s income conditional on their parents’ income—as apparent, for instance, 

in its oft-invoked interpretation as a measure of regression to the (arithmetic) mean. However, it 

pertains to the conditional geometric mean of the children’s income.1 This not only makes all 

conventional interpretations of the IGE invalid but also generates serious methodological 

problems. 

 At their root, these problems are the result of a very simple fact, i.e., that the geometric 

mean is undefined for variables including zero in their support. As Mitnik and Grusky (2017) 

have shown, this (a) makes it impossible to determine the extent to which parental income 

advantage is transmitted through the labor market among women (as many women have zero 

earnings), and (b) greatly hinders research on the role that marriage plays in generating the 

observed levels of intergenerational persistence in family income (as many people remain single 

or have nonworking spouses, and therefore cannot be included in analyses examining the 

relationship between people’s parental income and the income contributed by their spouses).  
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As a result, the study of gender and marriage dynamics in intergenerational processes has been 

badly hampered.  

Equally important, Mitnik and Grusky (2017) have shown that, as a consequence of 

mobility scholars’ expedient of dropping children with zero earnings from samples (to address 

what is perceived as the problem of the logarithm of zero being undefined), estimation of 

earnings IGEs with short-run proxy earnings measures is almost certainly affected by substantial 

selection biases. This makes the widespread use of the IGE of men’s individual earnings as an 

index of economic persistence and mobility in a country a rather problematic practice. 

Mitnik and Grusky (2017) have argued that these conceptual and methodological 

problems can be solved in a straightforward manner by simply replacing the IGE of the 

geometric mean—the de facto estimated IGE—by the IGE of the expectation—the IGE that 

mobility scholars thought they were estimating—as the workhorse intergenerational elasticity. 

They have also called for effectuating such replacement. This requires, however, that the 

methodological knowledge necessary to estimate the IGE of the expectation with short-run 

income variables is made available.   

Mitnik (2017) contributed to this goal by advancing a generalized error-in-variables 

model for the estimation of the IGE of the expectation with the Poisson Pseudo Maximum 

Likelihood (PPML) estimator (Santos Silva and Tenreyro 2006). Here I take on the 

complementary task of developing a generalized error-in-variables model for the IV estimation 

of that IGE. For reasons I discuss later, among various possible estimators I focus on the 

additive-error version of the Generalized Method of Moments (GMM) IV estimator of the 

Poisson or exponential regression model (Mullahy 1997; Windmeijer and Santos Silva 1997). I 

show that, under empirical assumptions fully equivalent to those made for the IV estimation of 
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the conventional IGE, we can expect that GMM IV estimator to produce upward-biased 

estimates of the IGE of the expectation. By combining this result with Mitnik’s (2017) result that 

the PPML estimation of the IGE of the expectation with short-run income measures is affected 

by attenuation bias, I further show that a bracketing strategy equivalent to that used with the 

conventional IGE can be employed to set estimate the IGE of the expectation. This strategy, and 

the generalized error-in-variables model for IV estimation on which it relies (which is of clear 

independent interest), are the first two contributions of this article. 

In spite of the fact that the bracketing strategies generate set rather than point estimates of 

IGEs, it is nevertheless possible to construct confidence intervals for those IGEs. This can be 

achieved by considering the bracketing strategies from the perspective of the partial-

identification approach to inference, a very active field of statistical and econometric research in 

recent times (see Tamer [2010] and Canay and Shaikh [2017] for reviews). I explain how to 

construct confidence intervals for the partially-identified IGEs—which are the confidence 

intervals of interest—and how they differ from confidence intervals for the “identified sets” (the 

ranges of values that lie between the probability limits of the bound or “bracketing” estimators). I 

address, in particular, the issue of how to construct confidence intervals for the IGEs when the 

upper bound is estimated repeatedly with different sets of instruments. The third contribution of 

the article is therefore to show how one central aspect of statistical inference may still be carried 

out when using the bracketing strategies to set estimate IGEs, and to connect the literature on 

IGEs to the bourgeoning literature on partial identification and set estimation (e.g., Manski 2008; 

Ho and Rosen 2017).  

Although this does not seem to have been done before, when datasets with the necessary 

information are available it is possible to empirically evaluate whether a bracketing strategy 
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works as expected. Here I rely on a U.S. sample from the Panel Study of Income Dynamics 

(PSID) to examine the performance of both bracketing strategies. Using various instruments, I 

show that the set estimates produced with the bracketing estimators do bound the corresponding 

long-run IGE estimates when they are expected do so. I also assess how the information supplied 

by the set estimates varies across instruments and short-run measures of parental income, and 

how informative the set estimates based on the minimum estimates of upper bounds across 

instruments are. These empirical analyses are the fourth contribution of the article. 

The set estimation of IGEs—both the conventional IGE and the IGE of the expectation— 

can be carried out very easily with the statistical packages social scientists typically use. 

However, the computation of confidence intervals for the partially identified IGEs involves some 

difficulties, especially when it needs to account for the repeated estimation of an upper bound 

with different sets of instruments. For this reason, I have made available with this article three 

Stata programs that make the set estimation of both IGEs, and the computation of confidence 

intervals, a very simple endeavor. This is the fifth contribution of the article.  

The structure of the rest of the article is as follows. I first explain why the conventional 

IGE pertains to the conditional geometric mean of children’s income rather than to its 

conditional expectation, present the generalized error-in-variables models relevant for the set 

estimation of the conventional IGE, and fully specify the empirical conditions under which the 

bracketing strategy previously discussed in the literature works. Next, I introduce the IGE of the 

expectation (and discuss whether we need it in the toolbox of mobility scholars given the 

increasing popularity of the rank-rank slope, a different alternative to the conventional IGE), 

present the generalized error-in-variables model for its estimation with the PPML estimator 

advanced by Mitnik (2017), develop the new generalized error-in-variables model for its IV 
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estimation contributed by this article, and fully specify the empirical conditions under which the 

new bracketing strategy I propose here works. After that I discuss statistical inference under the 

partial-identification approach and present the results of the empirical analyses. The last section 

draws the article’s main conclusions. 

The conventional IGE and its interpretation  

The standard population regression function (PRF) posited in the mobility literature, which 

assumes the IGE is constant across levels of parental income, is:  

𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥,                                               [1] 

where 𝑌𝑌 is the child’s long-run income or earnings, X is long-run parental income or father’s 

earnings, 𝛽𝛽1 is the IGE as specified in the literature, and I use expressions like “Z|𝑤𝑤” as a 

shorthand for "𝑍𝑍|𝑊𝑊 = 𝑤𝑤.”  As already indicated, Mitnik and Grusky (2017) have shown that this 

conventionally estimated IGE has been misinterpreted. While mobility scholars have interpreted 

it as the elasticity of the expectation of children’s income or earnings conditional on parental 

income, it pertains in fact to the conditional geometric mean.  

Indeed, the parameter 𝛽𝛽1 is not, in the general case, the elasticity of the conditional 

expectation of the child’s income. This would hold as a general result only if 𝐸𝐸(ln𝑌𝑌|𝑥𝑥) =

ln𝐸𝐸(𝑌𝑌|𝑥𝑥). But, due to Jensen’s inequality, the latter is not the case. Instead, as 𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) =

ln exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), and 𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), Equation [1] is equivalent to 

ln𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥 ,                                           [2] 

where GM denotes the geometric mean operator. Therefore, 𝛽𝛽1 is the elasticity of the conditional 

geometric mean, i.e., the percentage differential in the geometric mean of children’s long-run 

income with respect to a marginal percentage differential in parental long-run income.2  
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Set estimation of the IGE of the geometric mean  

OLS estimation and the GEiV model  

Estimation of Equation [1] by OLS, after substituting short-run income variables for the 

long-run variables, opens the door to the two types of biases widely discussed in the literature. 

First, as income- and earnings-age profiles differ across economic origins, using proxy measures 

taken when parents or children are too young or too old to represent lifetime differences well 

results in lifecycle biases (e.g., Black and Devereux 2011). Second, in the case of the parental 

variables, and even in the absence of any lifecycle bias, the combination of transitory 

fluctuations and measurement error in the measure of short-run income with respect to true short-

run income produce substantial attenuation bias (see, e.g., Solon 1999; Mazumder 2005). The 

joint analysis of these biases is provided by the GEiV model (Haider and Solon 2006; see also 

Nybom and Stuhler 2016). 

In order to introduce the empirical assumptions of the GEiV model, it is necessary to first 

introduce the following population linear projections: 

ln𝑍𝑍𝑡𝑡 = 𝜆𝜆0𝑡𝑡 + 𝜆𝜆1𝑡𝑡 ln𝑌𝑌 + 𝑉𝑉𝑡𝑡                                          [3]   

ln 𝑆𝑆𝑘𝑘 = 𝜂𝜂0𝑘𝑘 + 𝜂𝜂1𝑘𝑘 ln𝑋𝑋 + 𝑄𝑄𝑘𝑘,                                       [4]   

where 𝑍𝑍𝑡𝑡 > 0 is children’s income at age t;  𝑌𝑌 > 0;  𝜆𝜆0𝑡𝑡 + 𝑉𝑉𝑡𝑡 is the measurement error in the 

logarithm of the short-run children’s variable as a measure of the logarithm of the corresponding 

long-run variable when 𝜆𝜆1𝑡𝑡 = 1; 𝜆𝜆1𝑡𝑡 captures left-hand lifecycle bias and thus may be different 

from one and varies with t; 𝑆𝑆𝑘𝑘 > 0 is parents’ income at age k; 𝑋𝑋 > 0;  𝜂𝜂0𝑘𝑘 + 𝑄𝑄𝑘𝑘 is the 

measurement error in the logarithm of the short-run parental variable as a measure of the 

logarithm of the corresponding long-run variable when 𝜂𝜂1𝑘𝑘 = 1; and 𝜂𝜂1𝑘𝑘 captures right-hand 

lifecycle bias and thus may be different from one and varies with parents’ age.3  

9



 The empirical assumptions of the GEiV model are the following. For any t and k: 

 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑉𝑉𝑡𝑡) = 0                                                         [5]      

𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑌𝑌 ,𝑄𝑄𝑘𝑘) = 0                                                        [6]     

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉𝑡𝑡,𝑄𝑄𝑘𝑘) = 0.                                                           [7]     

These assumptions are expected to hold imperfectly but still as good approximations, at least 

when 𝜆𝜆1𝑡𝑡 ≈ 𝜂𝜂1𝑘𝑘 ≈ 1. (To simplify the notation, in what follows I drop the subscripts t and k.) 

In the general case, the probability limit of the “short-run OLS estimator” of the 

conventional IGE (i.e., the OLS estimator with the long-run income variables replaced by short-

run variables), denoted by 𝛽𝛽�1, can be obtained by substituting Equations [3] and [4] in 𝛽𝛽�1 ≡

𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑍𝑍,ln𝑆𝑆)
𝑉𝑉𝑉𝑉𝑉𝑉(ln 𝑆𝑆) . Using that Equation [4] is a linear projection and therefore 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑄𝑄) = 0, that 

probability limit is: 

𝛽𝛽�1 = 𝛽𝛽1
𝜆𝜆1 𝜂𝜂1

 [𝜂𝜂1]2 + 𝑉𝑉𝑉𝑉
+
𝜆𝜆1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑌𝑌 ,𝑄𝑄) + 𝜂𝜂1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑉𝑉) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉,𝑄𝑄)

 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)[(𝜂𝜂1)2 + 𝑉𝑉𝑉𝑉] ,        [8] 

where 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) is what I will refer as the “variance ratio.”  

If the three empirical assumptions of the GEiV model hold, then Equation [8] reduces to: 

𝛽𝛽�1 = 𝛽𝛽1
𝜆𝜆1 𝜂𝜂1

 [𝜂𝜂1]2 + 𝑉𝑉𝑉𝑉
. 

If, in addition, both children’s and parents’ incomes are measured at the “right points” of their 

lifecycles, that is, if 𝜆𝜆1 = 𝜂𝜂1 = 1, then 𝛽𝛽�1 = 𝛽𝛽1
1

1+ 𝑉𝑉𝑉𝑉
 and the estimates obtained with the short-

run OLS estimator can be expected to be affected by attenuation bias. The bias, however, falls 

with 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄), which in turn depends on the exact short-run measure of parental income that is 

used. 
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 The GEiV model supplies a methodological justification for the estimation of the 

conventional IGE by OLS with proxy variables that satisfy some conditions (Nybon and Stuhler 

2016). Indeed, the GEiV model suggests that using measures of economic status (i.e., income, 

earnings) obtained at specific ages should eliminate the bulk of lifecycle bias—while the 

available evidence  indicates that estimating IGEs with parents’ and children’s information close 

to age 40 is the best approach (Haider and Solon 2006; Böhlmark and Lindquist 2006; 

Mazumder 2001; Nybom and Stuhler 2016). In the case of attenuation bias the GEiV model, and 

many analyses predating it (e.g. Solon 1992), suggests pushing 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄) down by using a 

multiyear average of parents’ income, rather than a single-year measure, as the proxy measure S. 

There is strong evidence that the bias can be substantially reduced this way, although there is 

disagreement on how many years are necessary to eliminate the bulk of it (see Mazumder 2005; 

Chetty et al. 2014: 1582 and Online Appendix E; Mitnik et al. 2018:9-14; Mazumder 2016).  

IV estimation and the GEiV-IV model 

 Most often mobility scholars have much fewer years of information available than what 

most believe are needed to nearly eliminate attenuation bias. Therefore, a natural alternative is to 

forgo estimation by OLS and, instead, address right-side measurement error by resorting to an IV 

estimator of 𝛽𝛽1. Here, variables like parental education or occupational status are used as 

instruments for the error-ridden proxy measure of long-run parental income (e.g., Ng 2007; 

Mulligan 1997; Zimmerman 1992). The main concern with this strategy has been, however, that 

the instruments typically available are most likely endogenous. In this context, IV estimates may 

still be useful if the sign of their asymptotic bias can be established. An analysis by Solon (1992: 

Appendix)—carried out under the assumption that the measurement errors are classical—

achieved that. I present next a more general version of this analysis that allows for lifecycle 
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effects, to which I refer as the generalized error-in-variables model for the IV estimation of the 

conventional IGE, or GEiV-IV model. I also nest this model within a more general expression 

for the probability limit of the IV estimator of that IGE.4 

Let L (e.g., parental years of education) be the instrument used for the IV estimation of 

𝛽𝛽1, and  

ln𝑌𝑌 = 𝜚𝜚0 + 𝜚𝜚1 ln𝑋𝑋 + 𝜚𝜚2𝐿𝐿 + 𝜅𝜅               [9] 

a population linear projection of ln𝑌𝑌 on ln𝑋𝑋 and 𝐿𝐿. The GEiV-IV model makes the following 

empirical assumptions. For any t and k: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉𝑡𝑡, 𝐿𝐿) = 0                                                   [10]      

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄𝑘𝑘, 𝐿𝐿) = 0,                                                 [11]       

at least when 𝜆𝜆1 ≈ 𝜂𝜂1 ≈ 1.  

I show in Online Appendix A that in the general case the probability limit of the IV 

estimator of the conventional IGE, 𝛽𝛽1̈, may be written as: 

𝛽𝛽1̈ =
𝜆𝜆1
𝜂𝜂1
�𝛽𝛽1 �1 −

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)� + 𝜚𝜚2

𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 ��

+
𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿),            [12] 

where SD denotes the standard deviation operator. Therefore, taking for granted that 0 <

|𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)| < 1, Equation [12] shows that IV estimation is consistent when the following 

conditions are met: (a) L is uncorrelated with the measurement errors, that is, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿) =

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿) = 0, (b) both children’s and parents’ incomes are measured at the right points of their 

lifecycles, that is, 𝜆𝜆1 = 𝜂𝜂1 = 1, and (c) L is a valid instrument, that is,  𝜚𝜚2 = 0. If, however, the 

instrument is invalid but Equations [10] and [11] do hold, the probability limit of the IV 

estimator is: 
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𝛽𝛽1̈ =
𝜆𝜆1
𝜂𝜂1
�𝛽𝛽1 + 𝜚𝜚2

𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)  �� .           [13] 

If, in addition, 𝜆𝜆1 = 𝜂𝜂1 = 1, then Equation [12] reduces to Solon’s (1992) widely cited result:  

𝛽𝛽1̈ = 𝛽𝛽1 + 𝜚𝜚2
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)  � .                      [14] 

Parental education and other similar instruments are assumed to be positively correlated 

with log-parental income, i.e., it is assumed that 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) > 0. Then, Equation [14] 

indicates that we can expect 𝛽𝛽1̈ to be larger or smaller than 𝛽𝛽1, depending on the sign of 𝜚𝜚2. 

Under the additional substantive assumption that 𝜚𝜚2 > 0, IV estimates with years of parental 

education (and other similar instruments) have been typically interpreted as providing an upper 

bound for the conventional IGE.  

Empirical assumptions of the bracketing strategy 

 Based on the last result, Solon (1992) suggested the bracketing strategy: To combine 

OLS and IV estimates to bracket—that is, set estimate—the true value of the conventional IGE. 

The analyses conducted here indicate that this strategy relies on nine empirical assumptions: (a) 

the assumptions of the GEiV model, i.e., Equation [5], [6] and [7]; (b) the assumptions of the 

GEiV-IV model, i.e., Equations [10] and [11]; (c) the lifecycle assumptions 𝜆𝜆1 = 𝜂𝜂1 = 1; (d) the 

invalid-instrument assumption, i.e., 𝜚𝜚2 > 0; and (e) an auxiliary empirical assumption, i.e., 0 <

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) < 1. 

The IGE of the expectation  

Due to the conceptual and methodological problems affecting the conventional IGE, 

Mitnik and Grusky (2017) have called for redefining the workhorse intergenerational elasticity. 

This entails replacing the PRF of Equation [1] by a PRF whose estimation delivers estimates of 
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the IGE of the expectation in the general case. Under the assumption of constant elasticity, that 

PRF can be written as:                                         

ln𝐸𝐸(𝑌𝑌|𝑥𝑥) = 𝛼𝛼0 + 𝛼𝛼1 ln 𝑥𝑥 ,                        [15]          

where 𝑌𝑌 ≥ 0, 𝑋𝑋 > 0 and  𝛼𝛼1 = 𝑑𝑑 ln𝐸𝐸(𝑌𝑌|𝑥𝑥)
𝑑𝑑 ln𝑥𝑥

 is the percentage differential in the expectation of 

children’s long-run income with respect to a marginal percentage differential in parental long-run 

income. Crucially, (a) all interpretations incorrectly applied to the conventional IGE are correct 

or approximately correct under this formulation (see Mitnik and Grusky 2017: Section V.A), (b) 

the IGE of the expectation is fully immune to the “zero problem” and the concomitant selection 

bias affecting the  estimation of the IGE of the geometric mean, and (c) the IGE of the 

expectation is very well suited for studying the role of marriage in the intergenerational 

transmission of advantage (see Mitnik and Grusky 2017: Section V.B).  

The IGE of the expectation is not the only mobility measure that is immune to the zero 

problem. Most notably, the increasingly popular “rank-rank slope” (RRS), a measure of relative-

position mobility and of the transmission of relative-position advantages across generations (e.g., 

Dahl and DeLeire 2008; Chetty et al. 2014), is well defined when income variables include zero 

in their support. This may suggest that mobility scholars can rely on the RRS to circumvent the 

problems affecting the conventional IGE, and therefore that analyses based on the IGE of the 

expectation are unnecessary.  

Nothing of the sort is the case. First, although the RRS is a clearly useful measure, it does 

not measure the same concept as does the IGE of the expectation—in other words, both of these 

measures are “mobility measures” in a very broad sense, not two alternative approaches for 

measuring the same thing. Second, while it is somewhat easier to deal with left-side and right-

side lifecycle biases, as well as right-side attenuation bias, in the estimation of the RSS than in 
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the estimation of intergenerational elasticities (Nybom and Stuhler 2017; Mazumder 2016), 

estimation of the RSS is affected by its own unique problem, left-side attenuation bias (Nybom 

and Stuhler 2017). This makes estimation of the RSS when only one annual measure of 

children’s income is available to compute their ranks (a very common situation) an unadvisable 

course of action. Third, because ranks, unlike money flows, are not additive across income 

sources— and, more generally, because family-income rank cannot be derived in any way from 

the ranks of family members in the individual-earnings distribution—it is not possible to use the 

RSS to study the “channels” (e.g., labor market, marriage market) through which the 

intergenerational transmission of family-income advantage occurs, while this can be easily done 

with the IGE of the expectation (see Mitnik and Grusky 2017: Section V.B). Lastly, while 

intergenerational elasticities can be easily embedded, and have been frequently embedded, 

within policy-relevant theoretical models (see, e.g., Benabou [2000], Durlauf and Seshadri 

[2018] and Solon [2004] for the conventional IGE, and Mitnik [2018] for the IGE of the 

expectation), there aren’t yet any comparable models embedding the RSS and, more crucially, 

developing them seems a quite daunting task. It follows that we need both the RRS and the IGE 

of the expectation in the toolbox of mobility scholars. 

Set estimation of the IGE of the expectation 

PPML estimation and the GEiVE model 

After substituting short-run for long-run income measures in Equation [15], the IGE of 

the expectation can be estimated using several approaches. Here I assume that estimation is 

based on the PPML estimator.5  In order to introduce the empirical assumptions of Mitnik’s 

(2017) generalized error-in-variables model for the estimation of the IGE of the expectation with 
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the PPML estimator, or GEiVE model, it is necessary to first introduce the following population 

linear projections: 

𝑍𝑍𝑡𝑡 = 𝜃𝜃0𝑡𝑡 + 𝜃𝜃1𝑡𝑡  𝑌𝑌 + 𝑊𝑊𝑡𝑡                                               [16]                     

ln  𝑆𝑆𝑘𝑘 = 𝜋𝜋0𝑘𝑘 + 𝜋𝜋1𝑘𝑘 ln𝑋𝑋 + 𝑃𝑃𝑘𝑘  ,                                   [17]                     

where 𝑍𝑍𝑡𝑡 ≥ 0 is children’s income at age t; Y is as defined earlier;  𝜃𝜃0𝑡𝑡 + 𝑊𝑊𝑡𝑡 is the measurement 

error in the children’s short-run income variable as a measure of the corresponding long-run 

variable when 𝜃𝜃1𝑡𝑡 = 1; 𝜃𝜃1𝑡𝑡 captures left-hand lifecycle bias and thus may be different from one 

and varies with t; and Equation [17] is the same as Equation [4] but I have used a different 

notation for the parameters and the error term, both to avoid confusions and because the 

populations covered by the two equations will be different as long as there are children whose 

short-run income is zero.6 Indeed, unlike in the case of the GEiV model in which 𝑍𝑍𝑡𝑡 > 0, in the 

GEiVE model 𝑍𝑍𝑡𝑡 ≥ 0, i.e., as the left-side measurement error concerns the income variable 

rather than its logarithm, the model does not preclude that the observed income variable is zero, 

and therefore children without any short-run income (e.g., those who are unemployed the year in 

which their incomes are measured) are included in all analyses. 

The empirical assumptions of the GEiVE model are the following. For any t and k: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑡𝑡, ln𝑋𝑋) = 0                      [18]       

𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑘𝑘,𝑌𝑌) = 0                           [19]      

𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑡𝑡,𝑃𝑃𝑘𝑘) = 0.                       [20]     

Like in the case of the GEiV model, these assumptions are expected to hold imperfectly but still 

as good approximations, at least when 𝜃𝜃1𝑡𝑡 ≈ 𝜋𝜋1𝑘𝑘 ≈ 1.  (As before, I omit in what follows the 

subscripts t and k to simplify the notation.) 
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Mitnik (2017) has shown that, at the level of approximation provided by second-order 

Taylor-series expansions, the probability limit of the “long-run PPML estimator” of the IGE of 

the expectation (i.e., the PPML estimator with long-run income variables), is: 

𝛼𝛼1 ≈ 𝐶𝐶𝛼𝛼1 − ��𝐶𝐶𝛼𝛼1�
2
− 𝑉𝑉𝛼𝛼1�

1
2 ,                 [21]  

where 𝐶𝐶𝛼𝛼1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 )]−1 and 𝑉𝑉𝛼𝛼1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]−1.7 His analyses also entail that, in the 

general case, the probability limit of the “short-run PPML estimator” of the IGE of the 

expectation (i.e., the PPML estimator with short-run income variables substituted for the long-

run variables), denoted by 𝛼𝛼�1, is: 

𝛼𝛼�1 ≈ 𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�
2
− 𝑉𝑉𝛼𝛼�1�

1
2 ,                 [22]  

where 

𝐶𝐶𝛼𝛼�1 = [𝜃𝜃1𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) + 𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃) + 𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝑃𝑃)]−1    

      𝑉𝑉𝛼𝛼�1 = 2 {𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)[(𝜋𝜋1)2 + 𝑉𝑉𝑉𝑉]}−1,                                                                                   

and 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) is again the variance ratio.8 

If the three empirical assumptions of the GEiVE model (i.e., Equations [18]-[20]) 

hold, 𝐶𝐶𝛼𝛼�1reduces to 

𝐶𝐶𝛼𝛼�1 = [𝜃𝜃1𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)]−1. 

If, in addition, 𝜃𝜃1 = 𝜋𝜋1 = 1, i.e., if the children’s and parents’ incomes are measured at the right 

points of their lifecycles, 𝐶𝐶𝛼𝛼�1 = 𝐶𝐶𝛼𝛼1 and 𝑉𝑉𝛼𝛼�1 = 2 {𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)[1 + 𝑉𝑉𝑉𝑉]}−1. As 𝜕𝜕𝛼𝛼�1
𝜕𝜕𝑉𝑉𝑉𝑉 

< 0, the 

estimates obtained with the short-run PPML estimator can be expected to be affected by 

attenuation bias.  
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The GEiVE model provides a methodological justification for estimating the IGE of the 

expectation with the PPML estimator and proxy variables that satisfy some conditions (exactly 

as the GEiV model does for the estimation of the conventional IGE by OLS). To minimize 

lifecycle biases, the GEiVE model suggests that researchers use measures of children’s and 

parents’ economic status (i.e., income, earnings) obtained at ages in which 𝜃𝜃1 ≅ 1 and 𝜋𝜋1 ≅ 1, 

respectively. Mitnik’s (2017) empirical results suggest that, as in the case of the conventional 

IGE, this happens when both parents’ and children’s incomes are measured close to age 40. The 

GEiVE model also indicates that researchers should use measures of average parental income or 

earnings over several years, rather than annual measures, so as to reduce 𝑉𝑉𝑉𝑉𝑉𝑉(P) as much as 

possible.  Mitnik’s (2017) empirical results suggest that, with survey data, it is necessary to use 

at least 13 years of information to eliminate the bulk of that bias.  

IV estimation and the GEiVE-IV model 

As I pointed out earlier, in most cases mobility scholars have relatively few years of 

parental information available, so we can expect their estimates of the IGE of the expectation 

with the PPML estimator to be affected by (potentially substantial) attenuation biases. As in the 

case of the conventional IGE, an obvious alternative is to estimate the IGE of the expectation 

with an IV estimator. There are several such estimators that could be used to this effect. These 

include the multiplicative- and additive-error versions of the GMM IV estimator of the Poisson 

or exponential regression model (Mullahy 1997; Windmeijer and Santos Silva 1997), two two-

step quasi-maximum-likelihood IV estimators of the same model (Wooldridge 1999:Sec. 6.1; 

Mullahy 1997:590-591), a two-step residual-inclusion estimator for nonlinear parametric models 

(Terza et al. 2008), and two different two-step regression-calibration IV estimators of 

generalized linear models with measurement error in covariates (Carroll et al. 2006:Ch. 6). The 
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two GMM IV estimators have the upper hand, however, as they make weaker assumptions than 

any of the other estimators (as they neither require the functional-form assumptions that all other 

estimators need for their first estimation step, nor the additional assumptions that the “predictor-

substitution” estimators of Mullahy 1997 and Carroll 2006 invoke). In addition, the GMM 

estimators involve standard asymptotic inferential procedures, while the other estimators require 

to account for the two-step nature of the estimation by using more complicated closed-form 

asymptotic variance estimators (e.g., Murphy and Topel 1985; Hardin 2002), or by resorting to 

resampling methods. In what follows I focus on the additive-error version of the GMM-IV 

estimator, to which I refer as the GMM-IVP estimator, and show that it is upward biased, 

asymptotically, when employed with the instruments typically available to mobility scholars.  

 I next advance a generalized error-in-variables model for the IV estimation of the IGE of 

the expectation, the GEiVE-IV model, in which I make empirical assumptions fully comparable 

to those of the GEiV-IV model.9 The empirical assumptions are the following. For any t and k: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑡𝑡, 𝐿𝐿) = 0                                   [23] 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑘𝑘, 𝐿𝐿) = 0.                                   [24] 

As usual, the assumptions are expected to hold imperfectly but still as good approximations, at 

least when 𝜃𝜃1𝑡𝑡 ≈ 𝜋𝜋1𝑘𝑘 ≈ 1. (In what follows, I drop the subscripts t and k.) 

As with the PPML estimator, a closed-form expression for the probability limit of the 

GMM-IVP estimator is not available. In the case of the former estimator, Mitnik (2017) 

addressed this problem by deriving the approximate closed-form expression I introduced above 

from the population moment problem solved by the probability limit of the estimator. This 

approach has proved less convenient in the case of the GMM-IVP estimator, so here I work 

directly with the relevant population moment conditions. That is, I compare the population 
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moment problems solved by (a) the probability limit of the PPML estimator with long-run 

income variables, and (b) the probability limit of the GMM-IVP estimator with short-run income 

variables (the “short-run GMM-IVP estimator”) and the instruments typically available to 

mobility scholars. Like Mitnik (2017), however, I use second-order Taylor-series approximations 

to some expectations to derive my results. 

The probability limit of the PPML estimator with long-run variables, 𝛼𝛼1, solves the 

population-moment condition 

𝐸𝐸(𝑋𝑋𝛼𝛼1 ln𝑋𝑋)
𝐸𝐸(𝑋𝑋𝛼𝛼1) = 𝐸𝐸(𝑌𝑌 ln𝑋𝑋 )                                                   [25]     

(Mitnik 2017:15), while �̈�𝛼1, the probability limit of the short-run GMM-IVP estimator, solves 

𝐸𝐸(𝑆𝑆�̈�𝛼1𝐿𝐿)
𝐸𝐸(𝑆𝑆�̈�𝛼1) = 𝐸𝐸(𝑍𝑍 𝐿𝐿). 10                                                          [26] 

Using equations [16] and [17] to substitute S and Z out in Equation [26] yields: 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)

≈ 𝐸𝐸(𝑌𝑌 ln𝑋𝑋)�
1 + 𝐹𝐹(�̈�𝛼1) �𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, W)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋) �

1 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) � ,          [27]    

where  

𝐹𝐹(�̈�𝛼1) =
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) �

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1) �

−1

, 

and Ψ = 𝑌𝑌 − exp(𝛼𝛼0)𝑋𝑋𝛼𝛼1 is an additive error based on Equation [15] (see Online Appendix A 

for the derivation of Equations [26] and [27]). 

 Equation [27] shows the (approximate) population moment problem solved by the 

probability limit of the short-run GMM-IVP estimator of the IGE of the expectation in the 

general case. Together, Equations [25] and [27] provide a counterpart to Equation [12]. As the 
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latter does for the linear IV estimator of the IGE of the geometric mean, the former (a) identify 

the various factors determining the probability limit of the GMM-IVP estimator of the IGE of the 

expectation with short-run variables, and (b) indicate that, in the general case, this estimator may 

be upward or downward inconsistent.  

 Substituting second-order Taylor-series approximations for the four expectations in 

𝐹𝐹(�̈�𝛼1) gives (see Online Appendix A): 

𝐹𝐹(�̈�𝛼1) ≈
1 + 0.5 {[𝜋𝜋1�̈�𝛼1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)} 

1 + 0.5 [𝜋𝜋1�̈�𝛼1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)
𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)

 𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑃𝑃) , [28] 

which may be larger, equal or smaller than one. Under the assumptions of the GEiVE-IV model, 

however, Equation [28] reduces to 𝐹𝐹(�̈�𝛼1) ≈ 1 +  0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)          
1+0.5 [𝜋𝜋1�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

> 1 and Equation [27] 

becomes: 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)

≈ 𝐸𝐸(ln𝑋𝑋  𝑌𝑌)�
1 +  �𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋)� �1 + 0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)          
1 + 0.5 [𝜋𝜋1�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) �

1 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) � . [29]    

If in addition 𝜃𝜃1 = 𝜋𝜋1 = 1,  the last equation reduces to: 

𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋�̈�𝛼1) ≈ 𝐸𝐸(𝑌𝑌, ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)
𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋) �1 +

0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)     
1 + 0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

�

+ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)
0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)     

1 + 0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 
,             [30] 

where I have used 𝐸𝐸(ln𝑋𝑋  𝑌𝑌) = 1 + 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑌𝑌). 

Equations [25] and [30] provide a counterpart to Equation [14]. Indeed, as 

𝜕𝜕𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋� �𝐸𝐸�𝑋𝑋�̈�𝛼1��
−1

𝜕𝜕�̈�𝛼1
> 0 (see Online Appendix A), and safely assuming that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) > 0, 

those equations show that the probability limit of the short-run GMM-IVP estimator is an upper 
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bound for the IGE of the expectation when the invalid instrument is positively correlated with 

the error term. The equations also show that the upper bound is tighter when (a) the covariance 

between the instrument and the error term, 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ), is smaller, (b) the slope of the linear 

projection of 𝐿𝐿 on ln𝑋𝑋, 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋)/𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋), is larger, and (c) the short-run measure of 

parental income is less noisy, i.e., 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) is smaller relative to 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋). 

Empirical assumptions of the bracketing strategy 

 The GEiVE-IV model just advanced provides a foundation for combining PPML and 

GMM-IVP estimates with the goal of set estimating the IGE of the expectation. The bracketing 

strategy relies in this case on the following empirical assumptions: (a) the assumptions of the 

GEiVE model, i.e., Equations [18], [19] and [20]; (b) the assumptions of the GEiVE-IV model, 

i.e., Equation [23] and [24]; (c) the lifecycle assumptions 𝜆𝜆1 = 𝜂𝜂1 = 1; (d) the invalid-instrument 

assumption 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ) > 0; and (e) the auxiliary empirical assumption 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) > 0.  These 

assumptions are strictly isomorphic to those I identified in the case of the bracketing strategy for 

the IGE of the geometric mean. 

Constructing confidence intervals for partially-identified IGEs 

Under the empirical assumptions of the bracketing strategies discussed in the previous 

two sections, the probability limits of the OLS and IV estimators, and the probability limits of 

the PPML and GMM-IVP estimators, provide lower and upper bounds for the long-run IGEs of 

the geometric mean and expectation, respectively. This means that these IGEs are only “partially 

identified” (e.g., Manski 2003) by data on short-run incomes and the instruments: Even if we 

could obtain an unlimited number of observations, we would not be able to learn the true values 

of the long-run IGEs. For each IGE, we can only aim at learning what the range of values 

consistent with those data—the “identified set” defined by the relevant probability limits—is. 
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 The second difficulty is, of course, that we do not have an unlimited number of 

observations available but, rather, need to estimate the bounds from a finite sample. This means 

we need to take into account not only the uncertainty due to partial identification but also the 

uncertainty regarding the estimated bounds. There are two different cases to consider. In the first, 

simpler, case, there is only one estimate of the upper bound. In the second case the upper bound 

is estimated more than once with different sets of instruments, which creates more serious 

complications.   

A single estimate of the upper bound 

Previous research using the bracketing strategy has reported separate confidence intervals 

for the bounds estimated by the OLS and IV estimators, i.e., for the bounds of the identified set. 

However, when we rely on a bracketing strategy we would like to provide just one confidence 

interval that (a) refers to the partially identified long-run IGE, and (b) reflects uncertainty due 

both to partial identification and to sampling variability. An approach that suggests itself is to 

construct such a confidence interval by using as lower bound the lower bound of the confidence 

interval associated to the OLS or PPML estimate, and as upper bound the upper bound of the 

confidence interval associated to the relevant IV estimate. This, however, would generate a 

confidence interval for the identified set (e.g., Stoye 2009:1300), not for the IGE itself. The 

probability that this interval covers the IGE is at least as large as the probability that it covers the 

identified set (Imbens and Manski 2004: Lemma 1). In other words, the suggested confidence 

interval is too conservative.  

The intuition for why this is the case is that, asymptotically, the width of the identified set 

is large compared to the sampling error. Therefore, if the true IGE is not close to the lower 

bound, then the risk that the lower-bound estimate will be larger than the true value can be 
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ignored. Likewise, if the true parameter is not close to the upper bound, then the risk that the 

upper-bound estimate will be lower than the true value can be ignored. As the true value cannot 

be close to both bounds, the noncoverage risk is effectively one-sided. Denoting the probability 

of type-I error by 𝛼𝛼, this entails that, asymptotically, a 100 (1 − 𝛼𝛼) % confidence interval (e.g., 

a 90 percent confidence interval) for the identified set is a 100 �1 − 𝛼𝛼
2
�% confidence interval 

(e.g., a 95 percent confidence interval) for the IGE.  

This suggests using 100 (1 − 2𝛼𝛼) % confidence intervals for the identified sets as 

100 (1 − 𝛼𝛼) % confidence intervals for the IGEs.11 This, however, has a shortcoming: For any 

finite sample size N, if the width of the identified set is short enough, the confidence interval will 

be shorter than if the IGE were point identified (i.e., shorter than the confidence interval that 

would result if the OLS or PPML estimator, and the relevant IV estimator, had identical 

probability limits). The reason for this is that the exact coverage probabilities do not converge to 

their nominal values uniformly across different values of the width of the identified set. 

To address this problem, and following Imbens and Manski (2004), 100 (1 − 𝛼𝛼) % 

confidence intervals for the long-run IGE of the geometric mean, denoted by 𝐶𝐶𝐶𝐶𝛽𝛽1(𝛼𝛼), and for the 

long-run IGE of the expectation, denoted by 𝐶𝐶𝐶𝐶𝛼𝛼1(𝛼𝛼), can be constructed as follows: 

𝐶𝐶𝐶𝐶𝛽𝛽1(𝛼𝛼) ≡ ��̂�𝛽1𝑂𝑂𝑂𝑂𝑆𝑆 − 𝑐𝑐𝛽𝛽1(𝛼𝛼) 𝑆𝑆𝐸𝐸���̂�𝛽1𝑂𝑂𝑂𝑂𝑆𝑆�, �̂�𝛽1𝐼𝐼𝑉𝑉 + 𝑐𝑐𝛽𝛽1(𝛼𝛼) 𝑆𝑆𝐸𝐸���̂�𝛽1𝐼𝐼𝑉𝑉��                                 

𝐶𝐶𝐶𝐶𝛼𝛼1(𝛼𝛼) ≡ �𝛼𝛼�1𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂 − 𝑐𝑐𝛼𝛼1(𝛼𝛼) 𝑆𝑆𝐸𝐸� (𝛼𝛼�1𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂),  𝛼𝛼�1𝐺𝐺𝑃𝑃𝑃𝑃−𝐼𝐼𝑉𝑉𝑃𝑃 + 𝑐𝑐𝛼𝛼1(𝛼𝛼) 𝑆𝑆𝐸𝐸� (𝛼𝛼�1𝐺𝐺𝑃𝑃𝑃𝑃−𝐼𝐼𝑉𝑉𝑃𝑃)�, 

where 𝑐𝑐𝛽𝛽1(𝛼𝛼) and 𝑐𝑐𝛼𝛼1(𝛼𝛼) respectively solve 

Φ�𝑐𝑐𝛽𝛽1(𝛼𝛼) + 𝑉𝑉𝑊𝑊𝛽𝛽1� − Φ�−𝑐𝑐𝛽𝛽1(𝛼𝛼)� = 1 − 𝛼𝛼  

and 

Φ�𝑐𝑐𝛼𝛼1(𝛼𝛼) + 𝑉𝑉𝑊𝑊𝛼𝛼1� − Φ�−𝑐𝑐𝛼𝛼1(𝛼𝛼)� = 1 − 𝛼𝛼; 
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𝑉𝑉𝑊𝑊𝛽𝛽1 = 𝛽𝛽�1𝐼𝐼𝐼𝐼−𝛽𝛽�1𝑂𝑂𝑂𝑂𝑂𝑂

max�𝑆𝑆𝐸𝐸��𝛽𝛽�1
𝑂𝑂𝑂𝑂𝑂𝑂�,   𝑆𝑆𝐸𝐸��𝛽𝛽�1

𝐼𝐼𝐼𝐼�� 
 and 𝑉𝑉𝑊𝑊𝛼𝛼1 =  𝛼𝛼�1𝐺𝐺𝐺𝐺𝐺𝐺−𝐼𝐼𝐼𝐼𝐼𝐼−𝛼𝛼�1𝐼𝐼𝐼𝐼𝐺𝐺𝑂𝑂

max�𝑆𝑆𝐸𝐸��𝛼𝛼�1𝐼𝐼𝐼𝐼𝐺𝐺𝑂𝑂�,   𝑆𝑆𝐸𝐸��𝛼𝛼�1
𝐺𝐺𝐺𝐺𝐺𝐺−𝐼𝐼𝐼𝐼𝐼𝐼�� 

 are (estimates of) the 

relative widths of the identified sets; SE is, as before, the standard error operator; Φ(. ) denotes 

the CDF of the standard normal distribution; and the superscripts identify estimators. Here, 

𝑐𝑐𝛽𝛽1(𝛼𝛼) and 𝑐𝑐𝛼𝛼1(𝛼𝛼) are inversely related to 𝑉𝑉𝑊𝑊𝛽𝛽1 and 𝑉𝑉𝑊𝑊𝛼𝛼1, respectively, and the coverage 

probabilities of the confidence intervals do converge to their nominal values uniformly across 

values of the width of the identified sets. With 95 percent confidence intervals, 𝑐𝑐𝛽𝛽1(𝛼𝛼) and 

𝑐𝑐𝛼𝛼1(𝛼𝛼) are close to Φ−1(0.90) ≅ 1.64 when the width of the identified set is large compared to 

sampling error, and are equal to Φ−1(0.95) ≅ 1.96 under point identification. 

As companions to this article, I have made available two Stata programs that compute the 

confidence intervals just presented. One of them both set estimates the IGEs and computes the 

confidence intervals (which minimizes the amount of coding that is necessary), while the other 

computes the confidence intervals after the models have been estimated by the researcher (which 

provides more flexibility). With these programs, both set estimation and inference are very 

simple tasks.12  

Multiple estimates of the upper bound 

 So far I have considered the case in which there is only one estimate of the upper bound. 

The upper bound, however, may be estimated with different sets of instruments. As the 

probability limit of the IV estimator is different in each case, the identified set is the intersection 

of all the sets that can be formed by combining one of these probability limits with the 

probability limit of the lower-bound estimator. In this “intersection-bounds context,” the two-

step (2S) estimator that selects the minimum of the IV estimates across instruments is a 

consistent estimator of the upper bound (more on this below). However, as this estimator is 

based on multiple estimators, each with its own distribution, the construction of confidence 
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intervals needs to take into account the sampling uncertainty about all upper-bound estimates, 

not just the estimate that happens to be the minimum in the current sample (e.g., Chernozhukov, 

Lee and Rosen 2013).  

 Closely related approaches for constructing valid confidence intervals in the intersection-

bounds context have been developed by Nevo and Rosen (2012: Section IV) and Chernozhukov, 

Lee and Rosen (2013). Specialized to the problem at hand, Nevo and Rosen’s approach is as 

follows: 

(a) Identify and eliminate from further consideration the upper-bound estimates, if any, 

generated by estimators whose distributions are located “enough to the right” that they can be 

safely ignored in determining the asymptotic distribution of the two-step estimator.13 

(b) Estimate the absolute width of the identified set, Δ, as the difference between the 

minimum upper-bound estimate and the estimate of the lower bound. Use this value to compute 

the probability 𝑝𝑝 = 1 −Φ(ln𝑁𝑁  Δ) 𝛼𝛼  (instead of 𝑝𝑝 = 1 − 0.5 𝛼𝛼, as would be the case with a 

point estimate) that will be employed to determine the critical values for the construction of the 

confidence interval. This way of computing the probability takes into account that the IGE is set 

rather than point identified and is consistent with the goal of uniform convergence. 

(c) Estimate the correlation matrix of the relevant upper-bound estimators (those not 

eliminated in the first step), and use it to simulate a large sample from a zero-mean multivariate 

normal distribution with as many dimensions as the number of relevant estimators of the upper 

bound.14  

(d) Compute a new variable containing the maximum value obtained in each draw of the 

simulation, and determine the quantile of this variable corresponding to the probability 𝑝𝑝 (i.e., 

determine the quantile by “inverting” the empirical CDF of the maximum-value variable). Let’s 

26



denote the quantile in question as 𝑞𝑞𝛽𝛽1
𝑢𝑢 (𝛼𝛼) in the case of the long-run IGE of the geometric mean 

and as 𝑞𝑞𝛼𝛼1
𝑢𝑢 (𝛼𝛼) in the case of the long-run IGE of the expectation.  

(e) Compute the corresponding quantile for the lower bound by inverting the CDF of the 

univariate normal distributions, i.e., as 𝑞𝑞 = Φ−1(𝑝𝑝).  Let’s denote this quantile as 𝑞𝑞𝛽𝛽1
𝑙𝑙 (𝛼𝛼) in the 

case of the long-run IGE of the geometric mean and as 𝑞𝑞𝛼𝛼1
𝑙𝑙 (𝛼𝛼) in the case of the long-run IGE of 

the expectation.  

(e) The 100 (1 − 𝛼𝛼) % confidence intervals may then be constructed as follows: 

𝐶𝐶𝐶𝐶𝛽𝛽1∩(𝛼𝛼) ≡ ��̂�𝛽1𝑂𝑂𝑂𝑂𝑆𝑆 − 𝑞𝑞𝛽𝛽1
𝑙𝑙 (𝛼𝛼) 𝑆𝑆𝐸𝐸���̂�𝛽1𝑂𝑂𝑂𝑂𝑆𝑆�, min𝑚𝑚 ��̂�𝛽1

𝐼𝐼𝑉𝑉(𝑚𝑚) + 𝑞𝑞𝛽𝛽1
𝑢𝑢 (𝛼𝛼) 𝑆𝑆𝐸𝐸���̂�𝛽1

𝐼𝐼𝑉𝑉(𝑚𝑚)�� �                               

𝐶𝐶𝐶𝐶𝛼𝛼1∩(𝛼𝛼) ≡ �𝛼𝛼�1𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂 − 𝑞𝑞𝛼𝛼1
𝑙𝑙 (𝛼𝛼) 𝑆𝑆𝐸𝐸� (𝛼𝛼�1𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂), min𝑚𝑚 � 𝛼𝛼�1

𝐺𝐺𝑃𝑃𝑃𝑃−𝐼𝐼𝑉𝑉𝑃𝑃(𝑚𝑚) + 𝑞𝑞𝛼𝛼1
𝑢𝑢 (𝛼𝛼) 𝑆𝑆𝐸𝐸��𝛼𝛼�1

𝐺𝐺𝑃𝑃𝑃𝑃−𝐼𝐼𝑉𝑉𝑃𝑃(𝑚𝑚)���, 

where 𝑚𝑚 = 1,2, … ,𝐺𝐺 indexes the sets of instruments used by the relevant upper bound 

estimators and ∩ denotes intersection (reflecting that these confidence intervals are valid in 

intersection-bounds contexts). 

 As a situation in which the upper bound is estimated with a single set of instruments 

qualifies as a (trivial) intersection-bounds context, the Nevo and Rosen’s (2012) confidence 

intervals are also valid in that situation.15 With large enough samples, they should be essentially 

identical to the Imbens and Manski’s (2004) confidence intervals. With smaller samples, 

however, Nevo and Rosen’s (2012) confidence intervals seem to be slightly more conservative. 

Therefore, Imbens and Manki’s (2004) confidence intervals seem preferable.16 

Although the 2S estimator of the upper bound is consistent (Nevo and Rosen 2012), it is 

not asymptotically unbiased—in fact, no estimator involving minimization or maximization can 

be unbiased (Hirano and Porter 2012). Chernozhukov, Lee and Rosen (2013) have proposed an 

alternative three-step (3S) estimator that is consistent and “half-median unbiased.” In the context 
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at hand, this means that the estimator has the property that at least half of its values across 

samples are above the true upper bound. The estimator selects the minimum of the estimates of 

the upper bound, but only after correcting them (this is the added step). The correction adds to 

each point estimate its standard error multiplied by a critical value.17 Confidence intervals are 

computed exactly or almost exactly as I described above.18   

While the risk with the 2S estimator is that in finite samples it may produce estimates that 

are significantly downward biased, the alternative 3S estimator has the shortcoming that it may 

tend to be overly conservative. The reason is that, unlike a median unbiased estimator (e.g., 

Birnbaum 1964), a half-median unbiased estimator of an upper bound may have the bulk of its 

distribution “way to the right.” In the empirical analyses of the next section I report estimates 

based on both estimators. 

Together with this article, I have made available a third Stata program that both set 

estimates the IGEs with multiple sets of instruments and computes the confidence intervals just 

discussed. Set estimation and inference in the intersection-bounds context is fully unproblematic 

with this program.19  

Empirical analyses 

 The main goal of this section is to empirically assess whether the bracketing strategies 

work as the generalized error-in-variables models lead us to expect, the information supplied by 

the bounds the strategies generate, and how the bounds vary when different instruments and 

short-run measures of parental income are used. The analyses are preceded by a brief description 

of the data and the estimation approaches employed.  
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Data and estimation 

The empirical analyses are based on a PSID sample that makes it possible to construct an 

approximate measure of long-run parental income but not of children’s long-run income.20 

However, as I explain below, this sample still allows to shed light on questions of central interest 

for this paper. The sample includes information on children born between 1966 and 1974, for 

which 25 years of parental data centered on age 40 (obtained when the children were between 1 

and 25 years old) are available. Children observed in the PSID when they were between 35 and 

38 years old are included in the sample. I use information on the average family income of 

children when they were 35-38 years old, on parents’ family income, age, and years of education 

when the children were 1-25 years old, and on fathers’ occupation when the children were 

growing up (as reported by the latter). I do not use information on earnings because I only 

estimate family-income IGEs (in part, to minimize the selection bias that results when children 

with zero income or earnings are dropped from samples when estimating the IGE of the 

geometric mean). Table 1 presents descriptive statistics, while Online Appendix C provides 

additional details on the sample and variables and explains in more detail why I focus 

exclusively on family-income IGEs. 

I use the OLS and Two-Stage Least Squares (TSLS) estimators to estimate the IGE of the 

geometric mean of children’s family income, the PPML and GMM-IVP estimators to estimate 

the IGE of the expectation of children’s family income, and employ sampling weights and 

compute robust standard errors in all cases. I construct the confidence intervals for the partially 

identified IGEs as explained in the previous section.21 

I use the following instruments in my analyses: (a) parents’ total years of education when 

the child was 15 years old, and in the time period covered by each short-run parental-income 
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measure; (b) the household head’s years of education when the child was 15 years old, and in the 

time period covered by each short-run parental-income measure; and (c) the father’s occupation. 

The reason for employing both time-varying and at-age-15 parental-education variables as 

instruments is that, in the datasets used by mobility scholars, parental education is sometimes 

available all years in which parental income is measured and sometimes is only available for 

when the children were of some specific age, usually in the 12-16 range. It’s then important to 

examine IV estimates generated with both types of parental-education variables. Online 

Appendix C explains why I use parents’ education and the household head’s education as 

instruments but not father’s education, which is the typical approach in the literature. 

The relationship between long-run and short-run measures of income varies with the age 

at measurement; for this reason, it is customary to include polynomials on children’s and 

parents’ ages as controls when estimation is based on short-run measures. However, as all IGE 

estimates I report are based on a sample in which the variation in children’s ages is very small, 

controlling for children’s age is unnecessary (see the next paragraph for a second reason for 

proceeding this way). Mitnik et al. (2015:34) have argued that the age at which parents have their 

children is not exogenous to their income, that parental age is causally relevant for their 

children’s life chances, and that insofar as we want persistence measures to reflect the gross 

association between parental and children’s income we should not control for parental age. Here 

I present estimates from models without controls for parental age, but estimates from models 

with such controls are very similar.  

As a measure of the long-run family income of children is not available, in all analyses, 

regardless of whether they pertain to short-run or long-run IGEs, I use the family income of 

children when they were 36-38 years old as their income measure. This is equivalent to making 
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𝜆𝜆1 = 𝜃𝜃1 = 1, 𝑉𝑉 = W = 0 (for all children), and  𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, V) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, W) = 0 by construction. 

As a result, in the empirical analyses I am not able to assess any aspect of the generalized error-

in-variables models pertaining to left-side measurement error. Nevertheless, I can still draw clear 

conclusions regarding right-side measurement error and the bracketing strategies. 

Results 

Figures 1 and 2 pertain to the IGE of the geometric mean. They present information that 

allows to assess the qualitative implications of the relevant generalized error-in-variables models, 

and how the bracketing strategy works when parental income is measured at different parental 

ages. Figures 3 and 4 do the same for the IGE of the expectation. Tables 2, 3a and 3b summarize 

the results obtained with the bracketing strategies, and present the estimates of the long-run 

IGEs. Table 2 reports the results obtained with what I will refer as the “ideal bracketing 

strategies,” as it displays IGE estimates pertaining to the average parental ages at which the 

measurement-error slopes 𝜂𝜂1 and 𝜋𝜋1 are equal to one. Those estimates are computed by 

interpolation, and therefore confidence intervals are not available. Tables 3a and 3b show 

estimates based on measures of parental income centered on the years the children were 13 years 

old, when the average age of the parents is close to 40, for the IGE of the geometric mean and 

the IGE of the expectation, respectively. Assessing the performance of the bracketing strategies 

in this context is of eminent practical interest, as mobility scholars normally do not know the 

ages at which the measurement-error slopes are equal to one with their data. So, when possible 

with those data, they simply use estimates based on income measures taken when parents and 

children are close to age 40 as their best guess (a guess informed by the results obtained with 

other, potentially quite different, data). I will refer to the bracketing strategies implemented this 

way as the “feasible bracketing strategies.” 22 
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Each of Figures 1 to 4 includes four panels. The results presented in each of these panels 

are based on a different set of short-run measures of parental income. In the top-left panels, 

parental income was measured when the children were 1 or 2 or 3 . . . up to 25 years old. In the 

other three panels, the short-run measures of parental income are multiyear averages. In the top-

right panels they are three-year averages, centered when the children were 2 or 3 or 4 . . . up to 

24 years old. In the bottom panels the measures of parental income are five- and seven-year 

averages, centered similarly. The age in the horizontal axis is in all cases the average age of the 

parents in the sample. The bottom curve in each panel shows the relationship between OLS- or 

PPML-based IGE estimates and average parental ages, while the top curve shows the 

relationship between estimates of the relevant parental measurement-error slope and those ages. 

In Figures 1 and 3, the two middle curves in each panel show the relationship between IV IGE 

estimates obtained when parental income is instrumented by the at-age-15 parental education 

variables and average parental ages. In Figures 2 and 4 the middle curve in each panel is similar 

but pertains to IV IGE estimates generated with the father’s occupation as instrument. As the 

short-run income measures rely on more years of information, from one to seven, estimates in all 

figures become less affected by transitory income fluctuations and the shapes of the curves 

become progressively clearer.  

Income-age profiles vary in a well-known manner across people with different levels of 

human capital, while the latter are strongly associated to parental income. We therefore expect 

that 𝜂𝜂1 and 𝜋𝜋1will increase with parental age, and will be smaller than one when the parents are 

younger and larger than one when the parents are older (e.g., Harden and Solon 2006). Figures 1 

to 4 fully confirm these expectations. In addition, consistent with what the two IV generalized 

error-in-variables models predict (see Equations [13] and [29]), the figures also show a clear 
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inverse relationship between the measurement-error slopes and the IV IGE estimates: While the 

former increase, the latter fall with the parents’ age.23 Similarly, consistent with what the GEiV 

and GEiVE models predict (see Mitnik 2017:39-40), the OLS- and PPML-based IGE estimates 

first increase (at very low values of the measurement-error slopes) but then decrease with 

parents’ age. Those slopes are equal to one when the parents are, on average, somewhat younger 

than 40, i.e., at average ages between 37.0 and 38.1 (see Table 2), while the slopes are in the 

1.07–1.10 range at age 40 (see Tables 3a and 3b).  

In all figures, the long-run IGE, represented by the darker-gray horizontal lines, is the 

IGE of the family income of children when they were 36-38 years old with respect to the 

(approximate) long-run family income of their parents. As explained earlier, for the purposes of 

the analyses here, the former income is assumed to be the true long-run income of children. 

Moreover, under the assumptions of the GEiV and the GEiVE models, and given what we know 

from previous research about the children’s ages at which 𝜆𝜆1 = 1 and 𝜃𝜃1 = 1 (e.g., Haider and 

Solon 2006; Mitnik 2017), it is likely that the estimates reported as long-run estimates in the 

figures and tables—0.7 in the case of the IGE of the geometric mean, 0.6 in the case of the IGE 

of the expectation—are quite close to the estimates that would be obtained if the long-run 

income of children were available.  

Comparing the long-run-IGE line with the IGE curves based on short-run income 

measures in the four figures, makes apparent that the ideal bracketing strategies work as 

expected: In all 16 panels, without exception, the point estimate of the long-run IGE is covered 

by the corresponding set estimate (i.e., it is bracketed by the OLS and TSLS estimates, or by the 

PPML and GMM-IVP estimates, as applicable), when the relevant measurement-error slope is 

equal to one. This is confirmed by Table 2, which also includes results obtained with the time-
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varying instruments. This table also makes clear that, within IGE concepts, the location of the set 

estimates generated by the bracketing estimators (represented by the sets’ midpoints), as well as 

their width, vary substantially across instruments and parental-income measures. This variation 

is driven, first, by the fact that, consistent with the implications of the GEiV and GEiVE models, 

the OLS and PPML estimates tend to increase with the number of years of information used to 

compute parental income.24 Second, there is substantial variation across instruments—with some 

instruments generating much tighter upper bounds than others—and this variation is almost 

perfectly correlated across measures of parental income and IGE concepts. Father’s occupation 

and parents’ education when income was measured provide the tightest bounds, both household-

head education variables provide the loosest bounds, while the upper bounds obtained with the 

at-age-15 parental-education variable are in between. 

A very similar analysis applies when we focus on the results of estimating the IGEs with 

the feasible bracketing strategies. Although all short-run estimates tend to be somewhat lower 

close to age 40 than at the ages at which the measurement-error slopes are equal to one—the 

mid-points of the “feasible set estimates” are, on average, about 7.5 percent lower than the mid-

points of the “ideal set estimates”—the former still cover, without any exception, the long-run 

estimates. Moreover, although the feasible set estimates are shifted downward, their widths are 

very similar to, and are highly correlated with, the widths of the ideal set estimates.25 More 

generally, the short-run estimates bracket the long-run estimates at essentially all parental ages 

(between 29 and 53).  

The foregoing shows that the upper bounds that different invalid instruments provide may 

be markedly different. It also suggests that, when implementing a feasible bracketing strategy, in 

addition to using a short-run measure of parental income centered around age 40 or so, and based 
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on as many years of parental information as possible, mobility scholars should generate IV IGE 

estimates with multiple sets of instruments rather than rely in just one instrument or set of 

instruments.  

The set estimates that result from the approach just suggested, using both the 2S and 3S 

estimators, are shown at the bottom of Tables 3a and 3b. They put the IGE of the geometric 

mean of children’s family income in the 0.57-0.78 (2S estimator) and 0.57-0.83 (3S estimator) 

ranges, compared to the long-run IGE estimate of 0.7. Similarly, they put the IGE of children’s 

expected family income in the 0.52-0.70 (2S estimator) and 0.52-0.76 (3S estimator) ranges, 

compared to the long-run IGE estimate of 0.6. Therefore, it is clear that the bracketing strategies 

provide highly informative set estimates for both long-run IGEs, even with the potentially 

conservative 3S estimator. At the same time, it is important to keep in mind that the confidence 

intervals for the long-run IGEs generated by the bracketing strategies are noticeably larger than 

those generated by the long-run estimators: 0.48-0.94 compared to 0.58-0.82, in the case of the 

IGE of the geometric mean; and 0.41-0.88 compared to 0.45-0.74, in the case of the IGE of the 

expectation. This is a consequence of the fact that the confidence interval of a partially identified 

parameter reflects not only sampling variability but also that the location of the parameter within 

the identified set cannot be determined by the data, regardless of the size of the sample. 

In the previous paragraph I focused on the set estimates based on short-run income 

measures that average seven years of parental information. Often, fewer years of information are 

available; in some countries, the datasets used to estimate IGEs only include one year of parental 

information. Tables 3a and 3b show that although the set estimates obtained with the 2S and 3S 

estimators are wider, they are still highly informative when they are based on five- or even three-

year parental-income measures: In the latter case, the set estimates are 0.52-0.79 (2S estimator) 
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and 0.52-0.85 (3S estimator), for the IGE of the geometric mean, and 0.48-0.68 (2S estimator) 

and 0.48-0.74 (3S estimator), for the IGE of the expectation. The set estimates are much wider, 

however, when annual income measures are used, as in this case they put the first IGE in the 

0.40-0.76 or 0.40-0.82 ranges, and the second IGE in the 0.40-0.68 or 0.40-0.74 ranges, 

depending on the estimator. 

Discussion 

The results of the empirical analyses have made clear that the generalized error-in-

variables models underlying the bracketing strategies provide a very good account of the 

relationships between long-run IGE estimates, the short-run IGE estimates generated by the 

OLS, PPML and IV estimators, the parents’ ages at which their income is measured, and the 

years of parental information used. Most crucially, the results have shown that both the ideal and 

the feasible versions of the bracketing strategies work exactly as those models lead us to expect. 

The empirical analyses also confirmed that, as predicted by the GEiV and GEiVE models, the 

lower bounds generated by the bracketing strategies become tighter as additional years of 

information are used to compute the short-run parental income measures. 

Different invalid instruments can be expected to be differentially correlated to the 

logarithm of long-run parental income, and to the error terms of the long-run-IGE population 

regression functions (i.e., the error terms associated to Equations [1] and [15]). Therefore, we 

should also expect them to lead to different IV estimates, and to provide different upper bounds 

for the set estimates of the IGEs. Nevertheless, the magnitude of the differences revealed by the 

empirical analyses is quite striking. This suggests that mobility scholars should put a good 

amount of effort into searching for “best invalid instruments,” as this effort may have a large 

payoff in terms of the tightness of the upper bounds supplied by the IV estimators. This may 
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involve looking for additional instruments, beyond those typically employed by mobility 

researchers (i.e., parental education and occupation), and exploring the effects of alternative 

functional forms (e.g., entering an instrument in levels or in logarithms), as this has been shown 

to be very consequential in some contexts (Reiss 2016).  

Although in the empirical analyses I simply focused on the instruments commonly 

employed in the previous literature, the set estimates generated by the bracketing strategies 

proved to be highly informative for both IGEs as long as they were based on short-run parental 

income measures relying on at least three years of information. At the same time, the fact that the 

confidence intervals for the long-run IGEs generated by those strategies are rather wide 

underscores the fact that obtaining satisfactory levels of precision with these strategies requires 

samples substantially larger than those that are required to obtain satisfactory levels of precision 

with the individual short-run estimators that the strategies combine. 

Conclusion  

The IGE conventionally estimated in the mobility literature pertains to the conditional 

geometric mean of children’s income, which is at odds with the interpretations imposed on its 

estimates. In addition, the conventional IGE makes studying gender and marriage dynamics in 

intergenerational processes a very difficult enterprise, and leads to IGE estimates affected by 

selection biases. For these reasons, Mitnik and Grusky (2017) have called for replacing it by the 

IGE of the expectation. This requires that the methodological knowledge necessary to estimate 

this IGE with short-run income variables is made available.   

 In this paper I have contributed to this goal by advancing a generalized error-in-variables 

model for the IV estimation of the IGE of the expectation that makes empirical assumptions 

entirely comparable to those made for the IV estimation of the conventional IGE. Analogously to 
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what its counterpart for the IV estimation of the IGE of the geometric mean does, this model (a) 

provides an account of the relationship between the ages at which children’s and parents’ income 

are measured and the GMM-IVP estimates of the IGE of the expectation, and (b) entails that 

when the measurement-error slopes are equal to one, estimation of the IGE of the expectation 

with the GMM-IVP estimator is upward inconsistent.  

By combining the latter result with Mitnik’s (2017) result that the PPML estimation of 

the IGE of the expectation with short-income measures is downward inconsistent in the same 

context, I have proposed a bracketing strategy fully equivalent to that used to set estimate the 

conventional IGE. The proposed bracketing strategy couples short-run estimates generated with 

the PPML and GMM-IVP estimators to generate a set estimate of the long-run IGE of children’s 

expected income. As in the case of the IGE of the geometric mean, the feasible version of this 

strategy relies on estimates obtained with short-run income measures pertaining to when children 

and parents are close to 40 years old.  

Previous research that estimated bounds for the conventional IGE with the OLS and IV 

estimators reported separate confidence intervals for those bounds. In contrast, by considering 

the bracketing strategies from the perspective of the partial-identification approach to inference, I 

have specified how to construct confidence intervals for the partially-identified long-run IGEs, in 

particular when the upper bound is estimated multiple times with different sets of instruments. 

These confidence intervals have the correct coverage and converge uniformly to their nominal 

values regardless of the width of the identified set. 

The results of the empirical analyses with PSID data are fully consistent with the 

qualitative implications of the generalized error-in-variables models underlying the bracketing 

strategies (both the new strategy proposed here and the strategy previously used in the literature). 
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Most crucially, those analyses evaluated the performance of the feasible bracketing strategies by 

comparing their set estimates with point estimates of long-run IGEs. This indicated that those 

strategies work exactly as expected, and that the set estimates they generate may be highly 

informative.  
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Notes

1 Mitnik and Grusky (2017:Sect. II) provide textual evidence of the field’s misinterpretation of 

the IGE by reproducing and analyzing several quotations from prominent scholars of economic 

mobility. Two of those quotations are the following: (a) the IGE “measures the percentage 

differential in the son’s expected income with respect to a marginal percentage differential in the 

income of the father” (Björklund and Jäntti 2011:497), and (b) the IGE provides “a parametric 

answer to questions like, if the parents’ long-run earnings are 50% above the average in their 

generation, what percent above the average should we predict the child's long-run earnings to be 

in her or his generation?” (Solon 1999:1777). 

2 The parameter 𝛽𝛽1 is (also) the IGE of the expectation only when the error term satisfies very 

special conditions (Santos Silva and Tenreyro 2006; Petersen 2017; Wooldridge 2002:17). For 

the sake of brevity, from now on I assume that 𝑌𝑌 and 𝑋𝑋 pertain to children’s and parents’ 

income, rather than their income or earnings. 

3 Here, the measurement errors are additive and are equal to the difference between the 

logarithm of each short-run income variable and the logarithm of the corresponding long-run 

income variable. Therefore, in the general case, i.e., when 𝜆𝜆1𝑡𝑡 and  𝜂𝜂1𝑘𝑘 are not equal to one, 

the measurement errors are 𝜆𝜆0𝑡𝑡 + (𝜆𝜆1𝑡𝑡 − 1) ln𝑌𝑌 + 𝑉𝑉𝑡𝑡 (children) and 𝜂𝜂0𝑘𝑘 + (𝜂𝜂1𝑘𝑘 − 1) ln𝑋𝑋 +

𝑄𝑄𝑘𝑘 (parents). 

4 These more general analyses do not seem to have appeared in the literature before. They are 

secondary contributions of this article, in addition to its main contributions discussed in the 

introduction.   

5 Like all Pseudo Maximum Likelihood estimators, when the variables are measured without 

error the PPML estimator is consistent, regardless of the actual distribution of the dependent 
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variable, provided that the mean function is correctly specified (Gourieroux, Monfort, and 

Trognon 1984). There are good reasons to prefer the PPML estimator to other possible 

estimators of constant-elasticity models (Santos Silvan and Tenreyro 2006; 2011). 

6 The measurement errors are additive and are equal to the difference between the short-run 

income variable (or its logarithm, as relevant) and the corresponding long-run variable (or its 

logarithm). When 𝜃𝜃1𝑡𝑡 is not equal to one, the measurement error in the children’s short-run 

income variable as a measure of the corresponding long-run variable is  𝜃𝜃0𝑡𝑡 + (𝜃𝜃1𝑡𝑡 − 1) 𝑌𝑌 + 𝑊𝑊𝑡𝑡. 

Similarly, when 𝜋𝜋1𝑘𝑘 is not equal to one, the measurement error in the log of the short-run 

parental-income variable as a measure of the log of the long-run parental-income variable is 

𝜋𝜋0𝑘𝑘 + (𝜋𝜋1𝑘𝑘 − 1) ln𝑋𝑋 + 𝑃𝑃𝑘𝑘.  

7 Equation [21] assumes 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) ≠ 0. From Equation A2 in Mitnik (2017: Online 

Appendix, A), it follows that when 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) = 0 then 𝛼𝛼1 ≈ 0. Here, however, we can safely 

assume that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) > 0. 

8 Equations [21] and [22] assume, without any loss of generality, that 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(ln 𝑆𝑆) =

𝐸𝐸(ln𝑋𝑋) = 1. This entails no loss of generality because it can always be achieved by simply 

changing the monetary units used to measure income, i.e., by dividing each children’s income 

variable by its mean, and each parental income variable by the exponential of the mean of its 

logarithmic values minus one. 

9 In Online Appendix B, I advance a second generalized error-in-variables model, the GEiVE-IV-

S model, which makes the stronger assumptions that are standard in the literature on 

measurement error in nonlinear models (e.g., Carroll et al. 2006). Both measurement-error 

models lead to the conclusion that a bracketing strategy is as feasible with the IGE of the 

expectation as with the IGE of the geometric mean. However, as I explain in Online Appendix B, 
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the models have different implications in other respects. I focus on the first measurement-error 

model here because it allows me to show that set estimation of the IGE of the expectation does 

not require stronger assumptions than those made for the set estimation of the conventional IGE, 

in spite of the fact that it involves nonlinear models. 

10  Here and in the rest of this section I assume, without any loss of generality, that the instrument 

L has been demeaned and that 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(ln 𝑆𝑆) = 𝐸𝐸(ln𝑋𝑋) = 1 (see note 8). 

11 For instance, constructing a 95 percent interval under this approach would involve computing 

the lower bound as the OLS or PPML estimate minus (approximately) 1.64 times its standard 

error, and the upper bound as the IV estimate plus (approximately) 1.64 times its standard error. 

12 The Stata programs, called “igeset” and “igesetci,” are available as supplementary materials. 

They can also be installed directly from within Stata by using the following commands (when 

connected to the internet): “[redacted as URL identifies the author]” or “[idem].” 

13 This can be achieved by using a procedure proposed by Chernozhukov, Lee and Rosen (2013), 

which they dubbed “adaptive inequality selection” (AIS). Nevo and Rosen (2012: 666) used a 

different procedure, which has been superseded by AIS. 

14 Although Nevo and Rosen (2012) describe this step as involving the variance-covariance 

matrix rather than the correlation matrix, they meant the latter. Observe that although the 

components of the zero-mean random vector with a multivariate normal distribution are 

correlated, each of them follows a standard univariate normal distribution. 

15 In this trivial intersection-bounds context, the third and fourth steps described above should be 

replaced by the computation of the quantile by inversion of the CDF of the univariate normal 

distribution.   
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16 These are the confidence intervals reported in the next section (in the empirical analyses in 

which the upper bound is estimated only once).   

17 This critical value is computed by following the same steps described above, when computing 

the critical value used to construct the upper bound of the Nevo and Rosen’s confident interval, 

but using 𝑝𝑝 = 0.5 instead of 𝑝𝑝 = 1 −Φ(ln𝑁𝑁  Δ) 𝛼𝛼. 

18 Chernozhukov, Lee and Rosen (2013) compute the confidence intervals as described above. In 

my assessment, when the 3S estimator of the upper bound is used, it makes more sense to 

estimate the absolute width of the identified set by subtracting the estimate of the lower bound 

from the minimum of the corrected estimates of the upper bound. This is what I do in the 

empirical analyses of the next section (where it makes almost no difference). 

19 The Stata program is called “igeintb” and is available as supplementary material. It can also be 

installed directly from within Stata by using the following command (when connected to the 

internet): “[redacted as URL identifies the author].” 

20 It is not possible to select a PSID sample that (a) has the minimum size required by those 

analyses, and (b) can be used to construct long-run income measures for parents and children 

simultaneously.  

21 By “robust standard errors” I mean standard errors based on the sandwich estimator of 

variance (Huber 1967). I use the statistical package Stata to generate all estimates, and to 

produce the confidence intervals for the partially identified IGEs. 

22 The tables include results obtained with all instruments listed earlier. However, I have not 

included in the paper figures in which the IV estimates rely on instrumenting short-run parental 

income with time-varying measures of parents’ education, as they do not add much information 

to that provided by the other figures. 
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23 With the alternative, time-varying, parental-education variables, the IV IGE estimates tend to 

rise, in some cases markedly, when the parents are in their 50s. This is accounted by an increase 

in the covariance between the instrument and the error term at those ages, in the case of the IGE 

of the expectation (see Equation [29]); and by an increase in the parental-education coefficient at 

those ages, in the case of the IGE of the geometric mean (see Equation [13]).  

24 In contrast, the IV estimates do not show any clear trend in this respect. This is consistent with 

the GEIV-IV and the GEiVE-IV-S models (for the latter, see Online Appendix B), as neither 

leads us to expect that IV estimates will change in any particular way as more years of 

information are employed. The GEiVE-IV model, however, entails that the probability limit of 

the GMM-IVP estimator will fall with the number of years used (see Equation [30]). The fact 

that no trend is apparent should not be interpreted as evidence for the stronger assumptions of the 

GEiVE-IV-S model; it is possible that the effect is small and, given the size of the sample, the 

estimates may be too noisy for the effect to be visible.  

25 The average widths of the set estimates are 0.40 (ideal) and 0.35 (feasible), in the case of the 

IGE of the geometric mean; and 0.30 (ideal) and 0.29 (feasible), in the case of the IGE of the 

expectation. The correlations between widths are 0.95 and 0.94, respectively.  
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Table 1: Descriptive Statistics  (unweighted values)

Child's gender (% female) 51.7 Father's occupation (%)

Child's age Management occs. 10.2 Construction trades 10.2

Mean 36.6 Business operations specialists 0.6 Extraction workers 0.4

Standard deviation 0.6 Financial specialists 1.8 Installation, maintenance, and repair workers 7.5

Child's family income Computer and mathematical occs. 1.1 Production occupations 12.8

Mean 91,625 Architecture and engineering occs. 3.3 Transportation and material moving occs. 10.2

Standard deviation 88,398 Life, physical, and social science occs. 0.9 Military specific occupations 2.5

Average parental age Community and social services occs. 0.9 Doesn't know, refused 11.6

Mean 40.1 Legal occupations 0.4 Not applicable 1.5

Standard deviation 6.7 Education, training, and library occs. 2.7

Average parental income Arts, design, entert., sports, and media occs. 1.6

Mean 78,858 Healthcare practitioners and technical occs. 1.6

Standard deviation 64,185 Protective service occupations 2.8

Parents' years of education at child age 15 Food preparation and serving occupations 0.5

Mean 21.8 Building and grounds clean. and maint. occs. 1.5

Standard deviation 7.0 Personal care and service occs. 0.4

Household head' years of education at child age 15 Sales occupations 8.6

Mean 12.4 Office and administrative support occs. 3.0

Standard deviation 3.0 Farming, fishing, and forestry occs. 1.9

N 827

Note: Monetary values in 2012 dollars (adjusted by inflation using the Consumer Price Index for Urban Consumers - Research Series). The average parental age and income pertain to when
the children were 1-25 years old. The occupation is coded as "not applicable" when there was no father/surrogate, the father was deceased, or the father never worked    
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Table 2:  Long-run estimates and set estimates when measurement-error slopes are equal to one

Long-run

IGE of geometric mean of children's income
Long-run estimate 0.70

(0.58 - 0.82)
Set estimates, with short-run income instrumented by:

Parents' education when income was measured 0.46  - 0.79 0.55  - 0.81 0.58  - 0.84 0.60  - 0.86
Household head's education when income was measured 0.46  - 1.11 0.55  - 1.11 0.58  - 1.09 0.60  - 1.09
Parents' education when child was 15 yeard old 0.46  - 0.90 0.55  - 0.91 0.58 - 0.91 0.60  - 0.91
Household head's education when child was 15 years old 0.46  - 1.05 0.55  - 1.02 0.58  - 1.01 0.60  - 1.01
Father's occupation when child was growing up 0.46  - 0.76 0.55  - 0.74 0.58  - 0.78 0.60  - 0.79

Average parental age 40.5

IGE of children's expected income
Long-run estimate 0.60

(0.45 - 0.74 )
Set estimates, with short-run income instrumented by:

Parents' education when income was measured 0.46 - 0.74 0.52 0.75 0.55 - 0.77 0.56 - 0.78
Household head's education when income was measured 0.46 - 0.95 0.52 0.93 0.55 - 0.93 0.56 - 0.92
Parents' education when child was 15 yeard old 0.46 - 0.80 0.52 0.80 0.55 - 0.81 0.56 - 0.81
Household head's education when child was 15 years old 0.46 - 0.92 0.52 0.89 0.55 - 0.90 0.56 - 0.90
Father's occupation when child was growing up 0.46 - 0.69 0.52 0.70 0.55 - 0.73 0.56 - 0.74

Average parental age 40.5

Note: The set estimates were computed by interpolation. Point and set estimates are in bold, 95 percent confidence intervals (for the long-run estimates only)
are in parentheses.

One year Three years Five years Seven years
Parental information

37.0 37.6 37.8 38.1

37.0 37.6 37.8 38.1
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Table 3a:  Long-run estimate and set estimates of the IGE of the geometric mean when average parental age is close to 40

Long-run

Long-run estimate 0.7
(0.58 - 0.82)

Set estimates, with short-run income instrumented by:
Parents' education when income was measured

Household head's education when income was measured

Parents' education when child was 15 yeard old

Household head's education when child was 15 years old

Father's occupation when child was growing up

η1 estimates

Set estimates based on all upper-bound estimates 
Two-step estimator

Three-step estimator

Note: The set estimates are based on measures of parental income centered on the years the children were 13 years old. Point and set estimates are in bold, 95
percent confidence intervals are in parentheses. 

(0.29 - 0.94) (0.44 - 0.98) (0.47 - 0.94) (0.48 - 0.94)
0.40 - 0.82 0.52 - 0.85 0.55 - 0.83 0.57 - 0.83

0.40 - 0.76 0.55 - 0.780.52 - 0.79 0.57 - 0.78
(0.29 - 0.94) (0.44 - 0.98) (0.47 - 0.94) (0.48 - 0.94)

Parental information
One year Three years Five years Seven years

(0.29 - 0.90) (0.44 - 0.94) (0.47 - 0.90) (0.48 - 0.90)

(0.29 - 1.12) (0.44 - 1.11) (0.47 - 1.17) (0.48 - 1.17)

1.10 1.08 1.07 1.08

0.52 - 0.93

0.52 - 0.82

(1.02 - 1.18) (1.01 - 1.15) (1.02 - 1.13) (1.03 - 1.12)

(0.29 - 0.98) (0.44 - 0.97) (0.47 - 0.97) (0.48 - 0.97)

(0.48 - 1.10)

(0.48 - 1.01)

(0.47 - 1.10)(0.44 - 1.11)(0.29 - 1.11

(0.29 - 0.97)

0.57 - 0.78

0.57 - 0.98

0.57 - 0.82

0.57 - 0.93

0.57 - 0.84

0.52 - 0.93

0.52 - 0.82

0.55 - 0.78

0.55 - 0.98

0.55 - 0.82

0.55 - 0.92

0.55 - 0.83
(0.44 - 0.99) (0.47 - 1.00)

0.40 - 0.76

0.40 - 0.93

0.40 - 0.82

0.40 - 0.93

0.40 - 0.80

0.52 - 0.79
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Table 3b:  Long-run estimate and set estimates of the IGE of the expectation when average parental age is close to 40

Long-run

Long-run estimate 0.6
(0.45 - 0.74 )

Set estimates, with short-run income instrumented by:
Parents' education when income was measured

Household head's education when income was measured

Parents' education when child was 15 yeard old

Household head's education when child was 15 years old

Father's occupation when child was growing up

π1 estimates

Set estimates based on all upper-bound estimates 
Two-step estimator

Three-step estimator

Note: The set estimates are based on measures of parental income centered on the years the children were 13 years old. Point and set estimates are in bold, 95
percent confidence intervals are in parentheses. 

0.40 - 0.74 0.48 - 0.74 0.51 - 0.75 0.52 - 0.76
(0.31 - 0.87) (0.39 - 0.88) (0.41 - 0.87) (0.41 - 0.88)

(0.31 - 0.87) (0.38 - 0.88) (0.41 - 0.87) (0.41 - 0.88)

Parental information
One year Three years Five years Seven years

0.40 - 0.68 0.48 - 0.68 0.51 - 0.69 0.52 - 0.70

1.07 1.08

(0.31 - 1.04)

(0.31 - 0.82)

(1.02 - 1.18) (1.01 - 1.15) (1.02 - 1.13) (1.03 - 1.12)

(0.31 - 1.04)

(0.31 - 0.94)

1.10 1.08
(0.41 - 0.85)

0.40 - 0.72 0.48 - 0.74 0.51 - 0.73 0.52 - 0.70

0.40 - 0.85 0.48 - 0.84
(0.39 - 1.00)

(0.39 - 0.91)

(0.39 - 1.01)

(0.39 - 0.83)

(0.41 - 1.01)

(0.31 - 0.86) (0.39 - 0.87) (0.41 - 0.87) (0.41 - 0.84)

(0.41 - 0.82)

0.40 - 0.85 0.48 - 0.84 0.51 - 0.84 0.52 - 0.82

0.40 - 0.68 0.48 - 0.68 0.51 - 0.69 0.52 - 0.70

0.51 - 0.85 0.52 - 0.84

0.40 - 0.77 0.48 - 0.75 0.51 - 0.74 0.52 - 0.72
(0.41 - 0.99)

(0.41 - 0.87)

(0.41 - 0.98)

(0.41 - 0.89)

(0.41 - 1.00)
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A. Mathematical proofs for results presented in the main text 

I refer to equations presented in the main text using the equation numbers employed 

there. When equations from the main text are reproduced in this appendix, I rely on their original 

numbers in the main text.  

IV estimation of the IGE of the geometric mean 

I derive here Equation [12]. In doing so I use Equations [3] and [4] and the fact that, 

because these are linear projections, it follows that 𝐸𝐸(𝑉𝑉) = 0, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, ln𝑌𝑌) = 0, 𝐸𝐸(𝑄𝑄) = 0, and 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, ln𝑋𝑋) = 0.  I also use that the relationship between 𝛽𝛽1 and the parameters in Equation [9] 

is provided by the omitted-variable formula: 

𝛽𝛽1 = 𝜚𝜚1 + 𝜚𝜚2  
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

.       

The probability limit of the IV estimator in the general case can be derived as follows: 

𝛽𝛽1̈ =
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑍𝑍 , 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

 

                   =
𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆1 ln𝑌𝑌 + 𝑉𝑉, 𝐿𝐿)

𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)
 

=
𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆1𝜚𝜚0 + 𝜆𝜆1𝜚𝜚1 ln𝑋𝑋 + 𝜆𝜆1𝜚𝜚2𝐿𝐿 + 𝜆𝜆1𝜅𝜅, 𝐿𝐿)

𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)
+

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

     

= 𝜆𝜆1𝜚𝜚1
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

+ 𝜆𝜆1𝜚𝜚2
𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)

𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)
+

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

         

=
𝜆𝜆1
𝜂𝜂1
𝜚𝜚1
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 − 𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

+ 𝜆𝜆1𝜚𝜚2
𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)

𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)
+

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

 

=
𝜆𝜆1
𝜂𝜂1
�𝛽𝛽1 − 𝜚𝜚2  

𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

� + 𝜆𝜆1𝜚𝜚2
𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)

𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)
+

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

−
𝜆𝜆1
𝜂𝜂1
𝜚𝜚1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)    

      =
𝜆𝜆1
𝜂𝜂1
𝛽𝛽1 +

𝜆𝜆1
𝜂𝜂1
𝜚𝜚2 �

𝜂𝜂1𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

−  
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

� +
𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

−
𝜆𝜆1
𝜂𝜂1
𝜚𝜚1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿).     [𝐴𝐴1] 

 

1



Focusing for now on the term in square brackets: 

𝜂𝜂1𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

−  
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) =

𝜂𝜂1𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)
𝜂𝜂1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)

−  
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

 

=
1

𝑆𝑆𝑆𝑆(ln𝑋𝑋)
𝑆𝑆𝑆𝑆(𝐿𝐿) 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)

𝜂𝜂1𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)

−  
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) 

=
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿)

−  𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)�      

=
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2 − 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)

𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 � 

 =
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 �

−
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 �              

=
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 �

−
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)

𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 �             

=
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 � −
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)
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=
𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 � −
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿).     [𝐴𝐴2]        

Finally, substituting Equation [A2] into Equation [A1]: 

𝛽𝛽1̈ =
𝜆𝜆1
𝜂𝜂1
𝛽𝛽1 +

𝜆𝜆1
𝜂𝜂1
𝜚𝜚2

𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 �

−
𝜆𝜆1
𝜂𝜂1
𝜚𝜚2
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿) +

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

−
𝜆𝜆1
𝜂𝜂1
𝜚𝜚1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿) 

=
𝜆𝜆1
𝜂𝜂1
𝛽𝛽1 +

𝜆𝜆1
𝜂𝜂1
𝜚𝜚2

𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 � +
𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

−
𝜆𝜆1
𝜂𝜂1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿) �𝜚𝜚1 + 𝜚𝜚2

𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

� 

=
𝜆𝜆1
𝜂𝜂1
𝛽𝛽1 +

𝜆𝜆1
𝜂𝜂1
𝜚𝜚2

𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 � +
𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)

−
𝜆𝜆1
𝜂𝜂1
𝛽𝛽1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿) 

𝛽𝛽1̈ =
𝜆𝜆1
𝜂𝜂1
�𝛽𝛽1 �1 −

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿)� + 𝜚𝜚2

𝑆𝑆𝑆𝑆(𝐿𝐿)
𝑆𝑆𝑆𝑆(ln𝑋𝑋)

�
1 − [𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿)]2

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, 𝐿𝐿)
𝜂𝜂1𝑆𝑆𝑆𝑆(ln𝑋𝑋) 𝑆𝑆𝑆𝑆(𝐿𝐿)

 ��

+
𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, 𝐿𝐿)
𝐶𝐶𝐶𝐶𝐶𝐶(ln 𝑆𝑆 , 𝐿𝐿).       [12] 

IV estimation of the IGE of the expectation  

I derive here Equations [26], [27] and [28] and the sign of  𝜕𝜕𝜕𝜕�𝑋𝑋
�̈�𝛼1 ln𝑋𝑋� �𝜕𝜕�𝑋𝑋�̈�𝛼1��

−1

𝜕𝜕�̈�𝛼1
.  I 

assume, without any loss of generality, that 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(ln𝑋𝑋) = 𝐸𝐸(ln 𝑆𝑆) = 1 (see note 8 
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in the main text) and that the instrument 𝐿𝐿 has been demeaned. I use Equations [16] and [17] and 

the fact that, because these are linear projections, it follows that 𝐸𝐸(𝑊𝑊) = 0, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝑌𝑌) = 0, 

𝐸𝐸(𝑃𝑃) = 0, and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃, ln𝑋𝑋) = 0.  

When resorting to the GMM-IVP estimator to estimate the IGE of the expectation with 

short-run measures, estimation is based on the sample analog of the following population 

moment conditions (where I assume only one instrument, L, is employed): 

𝐸𝐸��𝑍𝑍 − exp(�̈�𝛼0) 𝑆𝑆�̈�𝛼1�� = 0               

𝐸𝐸��𝑍𝑍 − exp(�̈�𝛼0) 𝑆𝑆�̈�𝛼1�𝐿𝐿� = 0.           

This means that �̈�𝛼1 solves: 

𝐸𝐸(𝑆𝑆�̈�𝛼1𝐿𝐿)
𝐸𝐸(𝑆𝑆�̈�𝛼1) =

𝐸𝐸(𝑍𝑍 𝐿𝐿)
𝐸𝐸(𝑍𝑍)                  

      
𝐸𝐸(𝑆𝑆�̈�𝛼1𝐿𝐿)
𝐸𝐸(𝑆𝑆�̈�𝛼1) = 𝐸𝐸(𝑍𝑍 𝐿𝐿).             [26] 

Using Equations [16] and [17] to substitute S and Z out in Equation [26] yields: 

𝐸𝐸([exp(𝜋𝜋0 + 𝜋𝜋1 ln𝑋𝑋 + 𝑃𝑃)]�̈�𝛼1𝐿𝐿)
𝐸𝐸([exp(𝜋𝜋0 + 𝜋𝜋1 ln𝑋𝑋 + 𝑃𝑃)]�̈�𝛼1) = 𝐸𝐸([𝜃𝜃0 + 𝜃𝜃1𝑌𝑌 + 𝑊𝑊] 𝐿𝐿)  

[exp(𝜋𝜋0)]�̈�𝛼1𝐸𝐸([exp(𝜋𝜋1 ln𝑋𝑋)]�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1𝐿𝐿)
[exp(𝜋𝜋0)]�̈�𝛼1𝐸𝐸([exp(𝜋𝜋1 ln𝑋𝑋)]�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1) = 𝜃𝜃0𝐸𝐸(𝐿𝐿 ) + 𝜃𝜃1𝐸𝐸(𝑌𝑌𝐿𝐿) + 𝐸𝐸(𝑊𝑊𝐿𝐿)   

𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1𝐿𝐿)
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1) = 𝜃𝜃1𝐸𝐸(𝑌𝑌𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊) . 

Let’s now define: 

𝐹𝐹(�̈�𝛼1) =
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) �

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1) �

−1

.  

We may now write: 
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𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) = [𝜃𝜃1𝐸𝐸(𝑌𝑌 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)]𝐹𝐹(�̈�𝛼1).                   [𝐴𝐴3]          

 Let 𝐿𝐿 = 𝛾𝛾0 + 𝛾𝛾1 ln𝑋𝑋 + �̈�𝐿 be the population linear projection of L on ln𝑋𝑋. Replacing L by 

this expression in Equation [A3] gives: 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1�𝛾𝛾0 + 𝛾𝛾1 ln𝑋𝑋 + �̈�𝐿��
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) = �𝜃𝜃1𝐸𝐸�𝑌𝑌 �𝛾𝛾0 + 𝛾𝛾1 ln𝑋𝑋 + �̈�𝐿�� + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)�𝐹𝐹(�̈�𝛼1) 

𝛾𝛾0 + 𝛾𝛾1
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) +

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1�̈�𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)

= �𝜃𝜃1𝛾𝛾0 + 𝜃𝜃1𝛾𝛾1𝐸𝐸(ln𝑋𝑋𝑌𝑌) + 𝜃𝜃1𝐸𝐸��̈�𝐿𝑌𝑌� + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)�𝐹𝐹(�̈�𝛼1). 

Using now 𝑌𝑌 = exp(𝛼𝛼0)𝑋𝑋𝛼𝛼1 + Ψ to substitute Y out, we obtain: 

𝛾𝛾0 + 𝛾𝛾1
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) +

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1�̈�𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)

= �𝜃𝜃1𝛾𝛾0 + 𝜃𝜃1 𝛾𝛾1𝐸𝐸(ln𝑋𝑋𝑌𝑌) + 𝜃𝜃1𝐸𝐸��̈�𝐿 [exp(𝛼𝛼0)𝑋𝑋𝛼𝛼1 + Ψ]� + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)�𝐹𝐹(�̈�𝛼1) 

−𝛾𝛾1 + 𝛾𝛾1
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) +

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1�̈�𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1𝛼𝛼̈ 1)

= �−𝛾𝛾1𝜃𝜃1 + 𝜃𝜃1𝛾𝛾1𝐸𝐸(ln𝑋𝑋 𝑌𝑌) + 𝜃𝜃1
𝐸𝐸� 𝑋𝑋𝛼𝛼1�̈�𝐿�
𝐸𝐸(𝑋𝑋𝛼𝛼1) + 𝜃𝜃1𝐸𝐸��̈�𝐿Ψ� + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)� 𝐹𝐹(�̈�𝛼1), 

where I have used exp(𝛼𝛼0) = 𝜕𝜕(𝑌𝑌)
𝜕𝜕(𝑋𝑋𝛼𝛼1) and 𝛾𝛾0 = −𝛾𝛾1; the latter follows from the demeaning of L 

and 𝐸𝐸(ln𝑋𝑋) = 1. 

 As 𝐸𝐸��̈�𝐿� = 0 and 𝐶𝐶𝐶𝐶𝐶𝐶��̈�𝐿, ln𝑋𝑋� = 0 by construction, second-order Taylor-series 

approximations to 𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1�̈�𝐿� and 𝐸𝐸�𝑋𝑋𝛼𝛼1�̈�𝐿� around the expectations of �̈�𝐿 and ln𝑋𝑋 are zero as 

well. We may then write: 

−𝛾𝛾1 + 𝛾𝛾1
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) ≈ �−𝛾𝛾1𝜃𝜃1 + 𝜃𝜃1 𝛾𝛾1𝐸𝐸(ln𝑋𝑋 𝑌𝑌) + 𝜃𝜃1𝐸𝐸��̈�𝐿Ψ� + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)�𝐹𝐹(�̈�𝛼1) 
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𝛾𝛾1 �
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) − 1�

≈ {𝛾𝛾1𝜃𝜃1[𝐸𝐸(ln𝑋𝑋 𝑌𝑌) − 1] + 𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿 − 𝛾𝛾0 − 𝛾𝛾1 ln𝑋𝑋 ,Ψ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)}𝐹𝐹(�̈�𝛼1) 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) − 1

≈ �𝜃𝜃1[𝐸𝐸(ln𝑋𝑋𝑌𝑌) − 1] +
𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)

𝛾𝛾1
− 𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,Ψ) +

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)
𝛾𝛾1

� 𝐹𝐹(�̈�𝛼1) 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) ≈ 1 + 𝐹𝐹(�̈�𝛼1) �𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋,𝑌𝑌) +

𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)
𝛾𝛾1

+
𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)

𝛾𝛾1
� 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)

≈ 𝐸𝐸(ln𝑋𝑋 ,𝑌𝑌)�
1 + 𝐹𝐹(�̈�𝛼1) �𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋,𝑌𝑌) + 𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)

𝛾𝛾1
+ 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑊𝑊)

𝛾𝛾1
�

1 + 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑌𝑌) �  ,       [𝐴𝐴4] 

where I have used 𝐸𝐸(ln𝑋𝑋 ,𝑌𝑌) = 1 + 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑌𝑌) and the fact that  𝐸𝐸(Ψ|x) = 0 entails that 

𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,Ψ) = 0.  

Substituting 𝛾𝛾1 out in Equation [A4] yields: 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)

≈ 𝐸𝐸(ln𝑋𝑋  𝑌𝑌)�
1 + 𝐹𝐹(�̈�𝛼1) �𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋,𝑌𝑌) + 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, W)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋) �

1 + 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑌𝑌) � .          [27] 

Computing now second-order Taylor-series approximations around 𝐸𝐸(ln𝑋𝑋) = 1,  

𝐸𝐸(𝐿𝐿) = 0, and 𝐸𝐸(𝑃𝑃) = 0 for the four expectations in 𝐹𝐹(�̈�𝛼1) gives: 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1� = 𝐸𝐸�[exp(ln𝑋𝑋)]𝜋𝜋1�̈�𝛼1�                                                                                                     

≈ exp(𝜋𝜋1�̈�𝛼1) + 0.5 [𝜋𝜋1�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1)𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)                              
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𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1𝐿𝐿) = 𝐸𝐸�[exp(ln𝑋𝑋)]𝜋𝜋1�̈�𝛼1𝐿𝐿�                                                                                                   

                   ≈ 0 + 0.5 0  𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 0.5 0 𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿) + exp(𝜋𝜋1�̈�𝛼1)𝜋𝜋1�̈�𝛼1 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)      

≈ exp(𝜋𝜋1�̈�𝛼1) 𝜋𝜋1�̈�𝛼1 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)                                                           

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1� =  𝐸𝐸�[exp(ln𝑋𝑋)]𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1�                                                                          

                           ≈ exp(𝜋𝜋1�̈�𝛼1) +  0.5 [𝜋𝜋1�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1)𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

+ 0.5 [�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1)  𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) + [�̈�𝛼1]2𝜋𝜋1 exp(𝜋𝜋1�̈�𝛼1)  𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑃𝑃) 

                          ≈ exp(𝜋𝜋1�̈�𝛼1) +  0.5 [𝜋𝜋1�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1)𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

+ 0.5 [�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1)  𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) + [�̈�𝛼1]2𝜋𝜋1 exp(�̈�𝛼1)  0                          

                         ≈  exp(𝜋𝜋1�̈�𝛼1) + 0.5 [�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1) {[𝜋𝜋1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) +  𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)} 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1𝐿𝐿� =  𝐸𝐸�[exp(ln𝑋𝑋)]𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1𝐿𝐿�                                                                     

                           ≈ 0 +  0.5 0 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 0.5 0 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) + 0.5 0 𝑉𝑉𝑉𝑉𝑉𝑉(𝐿𝐿) + 0 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑃𝑃)  

+ exp(𝜋𝜋1�̈�𝛼1)𝜋𝜋1�̈�𝛼1 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) + exp(𝜋𝜋1�̈�𝛼1) �̈�𝛼1 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑃𝑃) 

         ≈ exp(𝜋𝜋1�̈�𝛼1) �̈�𝛼1[𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑃𝑃)] .                                

Substituting these approximations in the expression for 𝐹𝐹(�̈�𝛼1): 

𝐹𝐹(�̈�𝛼1) ≈

exp(𝜋𝜋1�̈�𝛼1) 𝜋𝜋1�̈�𝛼1 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) 
exp(𝜋𝜋1�̈�𝛼1) + 0.5 [𝜋𝜋1�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1)𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 
exp(𝜋𝜋1�̈�𝛼1) �̈�𝛼1[𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑃𝑃)]   

exp(𝜋𝜋1�̈�𝛼1) + 0.5 [�̈�𝛼1]2 exp(𝜋𝜋1�̈�𝛼1) {[𝜋𝜋1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) +  𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)}

 

≈

 𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) 
1 + 0.5 [𝜋𝜋1�̈�𝛼1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

 𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑃𝑃)  
1 + 0.5 [�̈�𝛼1]2{[𝜋𝜋1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) +  𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)}

                           

≈
1 + 0.5 {[𝜋𝜋1�̈�𝛼1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) +  [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)} 

1 + 0.5 [𝜋𝜋1�̈�𝛼1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)
𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿)

 𝜋𝜋1𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 , 𝐿𝐿) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,𝑃𝑃)
. 

This is the result shown in Equation [28]. 
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In the main text I used that 𝜕𝜕𝜕𝜕�𝑋𝑋
�̈�𝛼1 ln𝑋𝑋� �𝜕𝜕�𝑋𝑋�̈�𝛼1��

−1

𝜕𝜕�̈�𝛼1
> 0, which I prove next. Employing 

integral expressions for expectations, Leibniz's rule for differentiation under the integral sign, 

and usual derivative rules, we have: 

𝜕𝜕𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋��𝐸𝐸�𝑋𝑋�̈�𝛼1��
−1

𝜕𝜕�̈�𝛼1

=
𝐸𝐸�𝑋𝑋�̈�𝛼1�

𝑑𝑑𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�
𝑑𝑑�̈�𝛼1

− 𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�
𝑑𝑑𝐸𝐸�𝑋𝑋�̈�𝛼1�
𝑑𝑑�̈�𝛼1

[𝐸𝐸(𝑋𝑋�̈�𝛼1)]2                                                 

                       =
𝐸𝐸�𝑋𝑋�̈�𝛼1� ∫ 𝑑𝑑𝑋𝑋�̈�𝛼1 ln𝑋𝑋

𝑑𝑑�̈�𝛼1𝑥𝑥>0 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥 − 𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋� ∫ 𝑑𝑑𝑋𝑋�̈�𝛼11
𝑑𝑑�̈�𝛼1𝑥𝑥>0 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥

[𝐸𝐸(𝑋𝑋�̈�𝛼1)]2     

                    =
𝐸𝐸�𝑋𝑋�̈�𝛼1�𝐸𝐸�𝑋𝑋�̈�𝛼11[ln𝑋𝑋]2�  − 𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�

[𝐸𝐸(𝑋𝑋�̈�𝛼1)]2 .                             

I need to show that the numerator of the last expression is positive, and to this end I use a 

“symmetrization trick.” Let’s define the following expectation:  

𝐶𝐶𝑋𝑋 ≡ 𝐸𝐸 ��ln �̇�𝑋 − ln𝑋𝑋�
2

 �̇�𝑋�̈�𝛼1𝑋𝑋�̈�𝛼1�, 

were �̇�𝑋 is an independent copy of 𝑋𝑋. It is clearly the case that 𝐶𝐶𝑋𝑋 > 0. I show next that 𝐶𝐶𝑋𝑋 is 

twice the numerator in question, which entails that the latter is positive: 

𝐶𝐶𝑋𝑋 = 𝐸𝐸��ln �̇�𝑋 − ln𝑋𝑋��ln �̇�𝑋 − ln𝑋𝑋� �̇�𝑋�̈�𝛼1𝑋𝑋�̈�𝛼1�                                                                                         

   = 𝐸𝐸���̇�𝑋�̈�𝛼1 ln �̇�𝑋 − �̇�𝑋�̈�𝛼1 ln𝑋𝑋��𝑋𝑋�̈�𝛼1  ln �̇�𝑋 − 𝑋𝑋�̈�𝛼1 ln𝑋𝑋� �                                                                    

 = 𝐸𝐸�𝑋𝑋�̈�𝛼11�̇�𝑋�̈�𝛼1 ln �̇�𝑋  ln �̇�𝑋 − 𝑋𝑋�̈�𝛼1 ln𝑋𝑋 �̇�𝑋�̈�𝛼1 ln �̇�𝑋 − �̇�𝑋�̈�𝛼1 ln �̇�𝑋  𝑋𝑋�̈�𝛼11 ln𝑋𝑋 + �̇�𝑋�̈�𝛼1𝑋𝑋�̈�𝛼1 ln𝑋𝑋 ln𝑋𝑋� 

          = 𝐸𝐸�𝑋𝑋�̈�𝛼1�𝐸𝐸��̇�𝑋�̈�𝛼1 ln �̇�𝑋 ln �̇�𝑋) − 𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋� 𝐸𝐸(�̇�𝑋�̈�𝛼1 ln �̇�𝑋� + 𝐸𝐸��̇�𝑋�̈�𝛼1�𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋  ln𝑋𝑋� −

            𝐸𝐸��̇�𝑋�̈�𝛼1 ln �̇�𝑋�𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�  

         = 2 �𝐸𝐸�𝑋𝑋�̈�𝛼1�𝐸𝐸(𝑋𝑋�̈�𝛼1 ln𝑋𝑋 ln𝑋𝑋) − 𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋� 𝐸𝐸(𝑋𝑋�̈�𝛼1 ln𝑋𝑋)�,                                                           

which completes the proof. 
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B. A second generalized error-in-variables model for the IV estimation of the IGE of the 

expectation 

 I advance here a second generalized error-in-variables models for the IV estimation of the 

IGE of the expectation, in which I make the stronger assumptions typically employed in the 

literature on measurement error in nonlinear models (e.g., Carroll et al. 2006). As I indicated in 

the main text, both measurement-error models lead to the conclusion that a bracketing strategy is 

as feasible with the IGE of the expectation as with the IGE of the geometric mean. However, the 

models have different implications in other respects, which I discuss here. I refer to the second 

measurement-error model as the GEiVE-IV-S model (the “S” stands for “stronger assumptions”).  

I refer to equations presented in the main text using the equation numbers employed 

there. When equations from the main text are reproduced in this appendix, I rely on their original 

numbers in the main text.  

 Like the GEiVE-IV model, the GEiVE-IV-S model makes the following empirical 

assumption: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑡𝑡, 𝐿𝐿) = 0.                                   [23] 

Instead of assumption [24], however, the GEiVE-IV-S model assumes 

𝑃𝑃𝑘𝑘 ⊥ 𝑋𝑋                                                    [𝐵𝐵1] 

𝑃𝑃𝑘𝑘 ⊥ 𝐿𝐿,                                                    [𝐵𝐵2] 

that is, that the measurement error in the log of the short-run parental-income variable is 

independent of both the long-run parental income and the instrument. (From here on, I drop the 

subscripts t and k.) 

 Let’s recall what 𝐹𝐹(�̈�𝛼1) denotes: 

𝐹𝐹(�̈�𝛼1) =
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) �

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1[exp(𝑃𝑃)]�̈�𝛼1) �

−1

. 
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Given that P is assumed independent of both 𝐿𝐿 and 𝑋𝑋, and using 𝑇𝑇 = exp (𝑃𝑃) to simplify the 

notation, we have that the term inside curly brackets is: 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1𝑇𝑇�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1𝑇𝑇�̈�𝛼1) =

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1  𝐿𝐿�𝐸𝐸�𝑇𝑇�̈�𝛼1� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝜋𝜋1�̈�𝛼1𝐿𝐿,𝑇𝑇�̈�𝛼1�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)𝐸𝐸(𝑇𝑇�̈�𝛼1)                                                    

                                 ≈
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1  𝐿𝐿�𝐸𝐸�𝑇𝑇�̈�𝛼1� + 𝐸𝐸(𝐿𝐿) 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝜋𝜋1�̈�𝛼1 ,𝑇𝑇�̈�𝛼1� + 𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1�𝐶𝐶𝐶𝐶𝐶𝐶�𝐿𝐿,𝑇𝑇�̈�𝛼1�

𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1)𝐸𝐸(𝑇𝑇�̈�𝛼1)  

≈
𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1𝐿𝐿�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) ,                                                                           

where I have used the following approximation: 𝐶𝐶𝐶𝐶𝐶𝐶(𝑀𝑀,𝑁𝑁 𝑅𝑅 ) ≈ 𝐸𝐸(𝑁𝑁) 𝐶𝐶𝐶𝐶𝐶𝐶(𝑀𝑀,𝑅𝑅) +

𝐸𝐸(𝑅𝑅) 𝐶𝐶𝐶𝐶𝐶𝐶(𝑀𝑀,𝑁𝑁), where M, N and R are any random variables.1 It follows that 𝐹𝐹(�̈�𝛼1) ≈ 1, and 

that in the GEiVE-IV-S model Equation [27] is replaced by: 

𝐸𝐸�𝑋𝑋𝜋𝜋1�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋𝜋𝜋1�̈�𝛼1) 

≈ 𝐸𝐸(𝑌𝑌 ln𝑋𝑋)�
1 +  𝜃𝜃1 �𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋)�

1 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) � .        [𝐵𝐵3] 

Hence, assuming—as in the analysis with the IGE of the geometric mean—that 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋) >

0, a comparison of Equations [25], [27] and [B3] indicates that the short-run GMM-IVP 

estimator is consistent when the following conditions are met: (a) the assumptions of the GEiVE-

IV-S model hold, that is, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, 𝐿𝐿) = 0,  𝑃𝑃 ⊥ 𝑋𝑋, and 𝑃𝑃 ⊥ 𝐿𝐿, (b) both children’s and parents’ 

incomes are measured at the right points of their lifecycles, that is, 𝜃𝜃1 = 𝜋𝜋1 = 1, and (c) L is a 

valid instrument, that is, 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ) = 0.  

Equation [B3] shows a first important difference between the two measurement-error 

models. If the instrument is valid, the GEIVE-IV’s Equation [30] reduces to: 

𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋�̈�𝛼1) ≈ 𝐸𝐸(𝑌𝑌 ln𝑋𝑋) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)

0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)     
1 + 0.5 [�̈�𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

.           [𝐵𝐵5] 
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Therefore, unlike with the GEiVE-IV-S model, under the weaker assumptions of the GEiVE-IV 

model the short-run GMM-IVP estimator is upward inconsistent even when the instrument is 

valid, and the magnitude of the asymptotic bias increases with 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃). 

If the instrument is invalid but both the empirical assumptions of the GEiVE-IV-S model 

and the lifecycle assumptions hold, Equation [B3] becomes: 

𝐸𝐸�𝑋𝑋�̈�𝛼1 ln𝑋𝑋�
𝐸𝐸(𝑋𝑋�̈�𝛼1) ≈ 𝐸𝐸(𝑌𝑌 ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)
𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿, ln𝑋𝑋),         [𝐵𝐵4]           

where I have used 𝐸𝐸(ln𝑋𝑋  𝑌𝑌) = 1 + 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑌𝑌). Equations [25] and [B4] provide a 

counterpart to Equation [14] under the stronger assumptions of the GEiVE-IV-S model. Indeed, 

as 𝜕𝜕𝜕𝜕�𝑋𝑋
�̈�𝛼1 ln𝑋𝑋� �𝜕𝜕�𝑋𝑋�̈�𝛼1��

−1

𝜕𝜕�̈�𝛼1
> 0 (see above), Equations [25] and [B4] indicate that, given an invalid 

instrument positively correlated with log-parental income, we can expect �̈�𝛼1 to be larger or 

smaller than 𝛼𝛼1, depending on the sign of 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ). Under the additional substantive 

assumption that 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ) > 0 when L is parental education (and other similar instruments), we 

can expect estimates obtained with the GMM-IVP estimator to provide an upper bound for the 

IGE of the expectation.  

Equations [25] and [B4] further show that the bias increases with 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,Ψ)
𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿,ln𝑋𝑋).  

Therefore, as with the GEiVE-IV model, the smaller the covariance between the instrument and 

the error term, and the larger the slope of the linear projection of 𝐿𝐿 on ln𝑋𝑋, the tighter that upper 

bound will be. Unlike with the GEiVE-IV model, however, with the GEiVE-IV-S model the 

level of noise in the short-run measure of parental income has no influence on the tightness of 

the upper bound. This is a second important difference between the two measurement-error 

models. 
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C. Sample, variables and related issues 

Like Hertz (2007), I define “child” broadly to include anyone of the right age reported in 

the PSID to be either the son, daughter, stepson, stepdaughter, nephew, niece, grandson or 

granddaughter of the household head or his wife (or long-term partner).2 As Hertz (2007:35) put 

it, “the idea is to look at the relation between children’s income and the income of the 

households in which they were raised, even if that household was not, or not always, headed by 

their mother or father.” Similarly, when the children are 1-17 years old, the “father” is the 

household head (if the head is male), while the “mother” is either the household head (if the head 

is female) or the head’s wife or long-term partner. When the children are older than 17, the father 

and mother are those determined to be the father and mother at age 17. 

The annual measures of family income are based on the PSID notion of “total family 

income.” But as the income components the PSID used to compute total family income are 

effectively affected by top coding in the period 1970-1978 (i.e., top codes were not only in place 

but were “binding” in that period for some people), and the PSID-computed total-family income 

for those years is based on these top-coded values, I proceeded as follows: (a) I addressed the 

top-coding of all income components in 1970-1978 by using Pareto imputation (Fichtenbaum 

and Shahidi 1988), and (b) I recomputed total family income for those years with the Pareto-

imputed component variables.  

I only estimate IGEs of family income, not of earnings. There are two reasons for 

proceeding this way. First, the IGEs of children’s individual earnings need to be estimated 

separately by gender, but the available PSID sample is rather small for IV estimation even when 

men and women are pooled (as I do in all analyses). Second, in the case of the IGE of the 

geometric mean, short-run estimates are affected by (potentially severe) selection biases because 
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children with zero income or earnings need to be dropped (Mitnik and Grusky 2017). This 

problem, however, is much more serious with earnings than with family income, as the share of 

children with zero earnings is much larger than the share of children with zero family income. To 

further address this issue, instead of using as dependent variable the logarithm of an annual 

measure of children’s family income when estimating the IGE of the geometric mean, I use the 

logarithm of the average family income of children when they were 35-38 years old (thus further 

reducing the number of children with zero income). For the sake of consistency (as children with 

zero income pose no problem in this case), I also use the average family income as dependent 

variable when estimating the IGE of the expectation.  

I use as instruments the household head’s years of education when the child was 15 years 

old and at the times parental income was measured, but not the father’s years of education, which 

is the instrument most often used in the mobility literature. I do not use this instrument because 

that would require dropping from the sample those children who grew up without a father, which 

is likely to generate selection bias. Nevertheless, if the father is present in the household, in the 

vast majority of cases he is coded as household head by the PSID. Therefore, the household 

head’s years of education is similar, but not identical, to the father’s years of education. I do use 

father’s occupation as instrument. This is not a problem because this variable is categorical; 

children that did not provide information on their fathers’ occupation (regardless of the reason) 

can be coded in a separate category, and this is what I do (see Table 1).  
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Notes

1 Bohrnstedt and Goldberger’s (1969) attribute the approximation to Kendall and Stuart (1963); 

the former’s analysis entails that the approximation involves assuming that 𝐸𝐸(∆𝑀𝑀 ∆𝑁𝑁 ∆𝑅𝑅) ≈ 0, 

where ∆𝑖𝑖 = 𝑖𝑖 − 𝐸𝐸(𝑖𝑖) for 𝑖𝑖 = 𝑀𝑀,𝑁𝑁,𝑅𝑅. It is easy to see that a second-order Taylor-series 

approximation for 𝐸𝐸(∆𝑀𝑀 ∆𝑁𝑁 ∆𝑅𝑅) around the expectations of M, N and R is equal to zero. 

2 By convention, the PSID always codes a man as household head and his spouse as wife, i.e., it 

does not code a woman as household head and his spouse as husband. 
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