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Abstract 
 

It has recently been argued that the intergenerational income elasticity (IGE) ubiquitously 

estimated in the economic mobility literature should be replaced by the IGE of expected income. 

For this to be possible, a generalized error-in-variables model for the estimation of the latter IGE 

with short-run income measures is required. This paper derives an approximate closed-form 

expression for the probability limit of the Poisson Pseudo Maximum Likelihood (PPML) 

estimator and uses it to develop the needed error-in-variables model. It also evaluates the model 

with data from the Panel Study of Income Dynamics. The results of the empirical analyses offer 

clear support for the account of lifecycle and attenuation biases provided by the model, and show 

that the strategy most commonly employed to estimate the conventional IGE with short-run 

income variables can also be used for the estimation of the IGE of expected income with the 

PPML estimator. 
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I. Introduction

The intergenerational elasticity (IGE) is the workhorse measure of intergenerational economic 

mobility. It has been widely estimated over the last four decades, very often with the goal of 

providing a summary assessment of the level of income or earnings mobility within a country 

(for reviews, see Solon 1999:1778-1788; Corak 2006; Mitnik et al. 2015:7-15). Beyond this 

elementary goal, the IGE has been used, among other purposes, to conduct comparative analyses 

of economic mobility and persistence across countries, regions, demographic groups, cohorts, 

and time periods (e.g., Chadwick and Solon 2002; Hertz 2005, 2007; Aaronson and Mazumder 

2008; Björklund and Jäntti 2000; Meyer and Lopoo 2008; Bloome and Western 2011); to 

examine the relationship between cross-sectional economic inequality and mobility across 

generations (e.g., Corak 2013; Bloome 2016); and to theoretically model and empirically study 

the impact of social policies and political institutions on inequality of opportunity (e.g., Solon 

2004; Bratsberg et al. 2007; Ichino et al. 2011; Landersø and Heckman 2016). 

In spite of the very central place that the IGE holds in the study of intergenerational 

mobility, Mitnik and Grusky (2017) have recently shown that this elasticity has been specified in 

a way that is inconsistent with the various interpretations imposed on its estimates. While the 

IGE has been widely construed as pertaining to the expectation of children’s income conditional 

on their parents’ income—as apparent, for instance, in its archetypical interpretation as a 

measure of regression to the (arithmetic) mean—in fact it pertains to the conditional geometric 

mean of the children’s income. This not only invalidates all conventional interpretations of the 

IGE, but also generates serious methodological problems. At their root, these are the result of a 

very simple fact, i.e., that the geometric mean is undefined for variables including zero in their 

support.  This fact markedly hampers the study of gender and marriage dynamics in 
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intergenerational processes, as it (a) makes it impossible to determine the extent to which 

parental economic advantage is transmitted through the labor market among women, and (b) 

greatly hinders research on the role that marriage plays in generating the observed levels of 

intergenerational persistence in family income. Equally important, estimation of the IGE with the 

annual or other short-run proxy income measures that are available is almost certainly affected 

by substantial selection biases, which result from mobility scholars’ expedient of dropping 

children with zero income from samples (to address what is perceived as the problem of the 

logarithm of zero being undefined). This makes the (currently widespread) use of the IGE of 

men’s individual earnings as an index of economic persistence and mobility in a country a rather 

problematic practice. 

Mitnik and Grusky (2017) have argued that these conceptual and methodological 

problems can be solved all at once by simply replacing the IGE of the geometric mean—the de 

facto estimated IGE—by the IGE of the expectation—the IGE that mobility scholars thought 

they were estimating—as the workhorse intergenerational elasticity. They have also called for 

effectuating such replacement. Their call, however, confronts a key methodological obstacle. 

Over the last 40 years or so, the mobility field has been centrally concerned with the 

lifecycle and attenuation biases that may result from the estimation of the conventional IGE with 

short-run proxy income measures, and the methodological strategies that may be used to avoid 

them. As a result, a large body of knowledge on these matters has accumulated over this period. 

A central achievement in this regard is Haider and Solon’s (2006) generalized error-in-variables 

(GEiV) model, which supplies the current methodological justification for the estimation of the 

conventional IGE with proxy variables that satisfy some conditions (see Nybom and Stuhler 

2016 for an illuminating discussion of this model). In stark contrast, the IGE of the expectation 
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was estimated for the first time by Mitnik et al. (2015), and there is very little methodological 

knowledge regarding its estimation with short-run measures. In particular, there is nothing 

comparable to the GEiV model that would apply to the IGE of the expectation.  

In this paper I tackle head on this key methodological obstacle to redefining the IGE as 

Mitnik and Grusky (2017) advocate. The task is made difficult by the lack of closed-form 

expressions for the probability limits of the estimators of the IGE of the expectation, and by the 

fact that in nonlinear models the bias induced by right-side measurement error may be in any 

direction. I deal with these difficulties by deriving an approximated closed-form expression for 

the probability limit of the Poisson Pseudo Maximum Likelihood (PPML) estimator based on 

Taylor-series expansions, and by relying on substantive knowledge to sign some key quantities 

in conducting proofs. This allows me to advance a formal measurement-error model, the GEiVE 

model, which plays for the IGE of the expectation the same role that the GEiV model plays for 

the conventional IGE.  

When datasets with the necessary information are available, a measurement-error model 

may be empirically evaluated. Here I use U.S. samples from the Panel Study of Income 

Dynamics (PSID) for this purpose. My results indicate that, when estimating the IGE of the 

expectation with proxy measures, the observed lifecycle and attenuation biases are in close 

agreement with the GEiVE model’s predictions. Equally important, the results provide evidence 

on the patterns and magnitudes of lifecycle and attenuation biases that are relevant for the 

specification of estimation strategies and the interpretation of results obtained with other 

datasets.  

Similarly to what the GEiV model and the associated evidence do for the estimation of 

the conventional IGE, the GEiVE model and the evidence I present here supply a methodological 
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justification for the estimation of the IGE of the expectation with proxy income variables that 

satisfy some conditions—that is, with income measures obtained when children and parents are 

close to 40 years old and, in the case of parents, based on several years of information. This 

eliminates the key obstacle to replacing the conventionally estimated IGE by the IGE of the 

expectation, as advocated by Mitnik and Grusky (2017). 

The structure of the rest of the paper is as follows. I start by explaining why the 

conventional IGE has been misinterpreted, the methodological problems that the estimation of 

that IGE generates, and Mitnik and Grusky’s (2017) proposal to redefine the IGE used as the 

workhorse measure of economic mobility. Next, I summarize the GEiV model, introduce the 

new GEiVE model, and present the empirical analyses. The last section distills the main 

conclusions of the paper. Mathematical proofs and supplementary materials, including additional 

empirical results, are collected in an Online Appendix.  

II. The IGE of what? Redefining the workhorse intergenerational elasticity 
 
As already indicated, the conventionally estimated IGE has been widely misinterpreted. While 

mobility scholars have interpreted it as the elasticity of the expectation of children’s income or 

earnings conditional on parental income, that IGE pertains in fact to the conditional geometric 

mean. Closely following Mitnik and Grusky’s (2017) analysis, the standard population 

regression function (PRF) posited in the literature, which assumes the elasticity is constant across 

levels of parental income, is:  

𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥,                                               [1] 

where 𝑌𝑌 is the child’s long-run income or earnings, X is long-run parental income or father’s 

earnings, 𝛽𝛽1 is the IGE as specified in the literature, and I use expressions like “Z|𝑤𝑤” as a 

shorthand for "𝑍𝑍|𝑊𝑊 = 𝑤𝑤.” The parameter 𝛽𝛽1 is not, in the general case, the elasticity of the 
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conditional expectation of the child’s income. This would hold as a general result only if 

𝐸𝐸(ln𝑌𝑌|𝑥𝑥) = ln𝐸𝐸(𝑌𝑌|𝑥𝑥). But, due to Jensen’s inequality, the latter is not the case. Instead, as 

𝐸𝐸(ln𝑌𝑌 |𝑥𝑥) = ln exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), and 𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = exp𝐸𝐸(ln𝑌𝑌 |𝑥𝑥), Equation [1] is equivalent to 

ln𝐺𝐺𝐺𝐺(𝑌𝑌|𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥 ,                                           [2] 

where GM denotes the geometric mean operator. Therefore, 𝛽𝛽1 is the elasticity of the conditional 

geometric mean, i.e., the percentage differential in the geometric mean of children’s long-run 

income with respect to a marginal percentage differential in parental long-run income.1 

As the geometric mean is undefined whenever an income distribution includes zero in its 

support, the IGE is undefined as well when this is the case. Mitnik and Grusky (2017: Section 

IV) have shown that this has very negative consequences for the study of gender and marriage 

dynamics in intergenerational processes. First, because a sizable share of women never join the 

(paid) labor force, the “zeros problem” makes impossible to determine the extent to which 

parental economic advantage—as measured by the family-income IGE—is transmitted through 

the labor market among women, and whether there are gender differences in this regard (as the 

relevant estimand, the women’s earnings IGE, is undefined). Second, the zeros problem greatly 

hinders research on the role that marriage plays in generating the observed levels of 

intergenerational persistence in family income. This is so because a measure that is central for 

this research—the IGE of the income contributed by a spouse with respect to a child’s own 

parental income—is also undefined as long as there are children that are single and spouses of 

married children that contribute no income.  

                                                           
1 The parameter 𝛽𝛽1 is (also) the IGE of the expectation only when the error term satisfies very 

special conditions (Santos Silva and Tenreyro 2006; Petersen 2017; Wooldridge 2002:17). 
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The unwitting reliance of the mobility field on the IGE of the geometric mean also has 

very negative consequences for the widespread practice of using the IGE of men’s individual 

earnings and—less frequently—of men’s and women’s family income as indices of economic 

persistence and mobility in a country. Indeed, the IGE is defined in terms of long-run earnings 

and family income, and it may be reasonable to assume, as an approximation, that these long-run 

measures are positive rather than nonnegative.2 But estimation is nevertheless adversely affected 

by the ubiquitous need to use short-run measures of children’s economic status (e.g., sons’ 

earnings in a particular year) as proxies for their unavailable long-run counterparts (e.g., sons’ 

average lifetime earnings). This is the case because the short-run measures almost always have a 

substantial probability mass at zero even when the corresponding long-run measures don’t.3 

Assuming that zero is not in the support of the annual or other short-run children’s measures 

employed for estimation is never a reasonable approximation in the case of men’s earnings (due 

to unemployment and other forms of nonemployment), and it is not a reasonable approximation 

in most countries and times—the potential exception being countries with a highly developed 

                                                           
2 As conditions like severe physical disability, severe mental illness, and imprisonment affect 

some children over their entire adult lives, strictly speaking zero is in the support of all measures 

of children’s long-run income, including men’s earnings and men’s and women’s family income. 

3 This is less of a problem for short-run parental measures, as (a) they typically are multiyear 

averages (more on this later), (b) parents with zero income for extended periods of time are 

unlikely to be able to raise their kids themselves, and (c) there are good reasons to use as parental 

income the income of the family in which the child lived when growing up (see, e.g., Hertz 

2007:35).  
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welfare state—in the case of family income.4 As argued in detail by Mitnik and Grusky (2017: 

Section III), dropping children without earnings or income from samples (the near-universal 

expedient employed to address this “short-run zeros problem”) generates substantial selection 

biases, and all approaches that might be used to try to avoid those biases, including imputing 

“small values” to children with zero earnings or income, are very unattractive due to a 

combination of methodological and pragmatic reasons. 

To address these problems, and similarly to what Santos Silva and Tenreyro (2006) did in 

the field of international trade, Mitnik and Grusky’s (2017) have called for redefining the 

workhorse measure of economic mobility. This entails replacing the PRF of Equation [1] by a 

PRF whose estimation delivers estimates of the IGE of the expectation in the general case. Under 

the assumption of constant elasticity, that PRF can be written as:                                         

ln𝐸𝐸(𝑌𝑌|𝑥𝑥) = 𝛼𝛼0 + 𝛼𝛼1 ln 𝑥𝑥,                                                    [3]          

where 𝑌𝑌 ≥ 0, 𝑋𝑋 > 0 and  𝛼𝛼1 = 𝑑𝑑 ln𝐸𝐸(𝑌𝑌|𝑥𝑥)
𝑑𝑑 ln𝑥𝑥

 is the percentage differential in the expectation of 

children’s long-run income with respect to a marginal percentage differential in parental long-run 

income. Crucially, (a) all interpretations incorrectly applied to the conventional IGE are correct 

or approximately correct under this formulation (see Mitnik and Grusky 2017: Section V.A), and 

(b) the IGE of the expectation is fully immune to the methodological problems affecting the IGE 

of the geometric mean and, in particular, is very well suited for studying the role of marriage in 

the intergenerational transmission of advantage (see Mitnik and Grusky 2017: Section V.B for 

details; and Mitnik et al. 2015:64-68 for an empirical application).  

                                                           
4 For the prevalence of families with zero annual income in the U.S. see, e.g., Chetty et al. (2014: 

Online Appendix Table IV). 
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III. The GEiV model 

When actual measures of long-run income or earnings for parents and children are available, 

Equation [1] may be consistently estimated by Ordinary Least Squares (OLS). However, such 

measures are almost never available, only short-run proxy variables are. Estimating Equation [1] 

by OLS after substituting the latter variables for the former opens the door to the two types of 

biases widely discussed in the literature. First, as income- and earnings-age profiles differ across 

economic origins, lifecycle biases result from estimating the conventional IGE with proxy 

measures taken when parents or children are too young or too old to represent lifetime 

differences well (e.g., Black and Devereux 2011). Second, in the case of the parental variables, 

the combination of transitory fluctuations and true measurement error produces substantial 

attenuation bias (see, e.g., Solon 1999; Mazumder 2005). The joint analysis of these biases is 

provided by the GEiV model (Haider and Solon 2006). 

For the sake of simplicity, I assume that all children are from the same cohort and, 

following Haider and Solon (2006), present separate analyses of measurement error in the left- 

and right-side variables of Equation [1]. We may write the GEiV model’s assumptions regarding 

left-side measurement error as:  

ln𝑍𝑍𝑡𝑡 = 𝜆𝜆0𝑡𝑡 + 𝜆𝜆1𝑡𝑡 ln𝑌𝑌 + 𝑉𝑉𝑡𝑡                                         [4]       

          𝐸𝐸(𝑉𝑉𝑡𝑡) = 0                                                                         [5] 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉𝑡𝑡, ln𝑌𝑌) = 0                                                           [6]       

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉𝑡𝑡, ln𝑋𝑋) = 0,                                                          [7]      

where 𝑍𝑍𝑡𝑡 > 0 is children’s income or earnings at age t,  𝑌𝑌 > 0,  𝜆𝜆0𝑡𝑡 + 𝑉𝑉𝑡𝑡 is the (additive) 

measurement error in the logarithm of the short-run measure as a proxy for the logarithm of the 

long-run measure if 𝜆𝜆1𝑡𝑡 = 1, and 𝜆𝜆1𝑡𝑡 captures left-hand lifecycle bias and thus may be different 
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from one and varies with t. Moving now to right-side measurement error, the GEiV model’s 

assumptions are: 

ln 𝑆𝑆𝑘𝑘 = 𝜂𝜂0𝑘𝑘 + 𝜂𝜂1𝑘𝑘 ln𝑋𝑋 + 𝑄𝑄𝑘𝑘                                       [8]     

          𝐸𝐸(𝑄𝑄𝑘𝑘) = 0                                                                         [9] 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄𝑘𝑘, ln𝑋𝑋) = 0                                                          [10]      

𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄𝑘𝑘, ln𝑌𝑌) = 0,                                                          [11]      

where 𝑆𝑆𝑘𝑘 > 0 is parents’ income or earnings around age k, 𝑋𝑋 > 0,  𝜂𝜂0𝑘𝑘 + 𝑄𝑄𝑘𝑘 is the (additive) 

measurement error in the logarithm of the short-run measure as a proxy for the logarithm of the 

long-run measure if 𝜂𝜂1𝑘𝑘 = 1, and 𝜂𝜂1𝑘𝑘 captures right-hand lifecycle bias and thus may be 

different from one and varies with parents’ age. Crucially, Equations [4] to [6] and [8] to [10] do 

not involve empirically refutable claims; rather, they are true by construction, as they simply 

define linear projections of ln𝑍𝑍𝑡𝑡 and ln 𝑆𝑆𝑡𝑡 on ln𝑌𝑌 and ln X, respectively (the very weak 

regularity conditions underlying linear projections certainly obtain in this context). In contrast, 

Equations [7] and [11] are empirical assumptions, which are not expected to hold perfectly but to 

constitute good approximations.5 

If instead of estimating the PRF of Equation [1]—and leaving implicit the subscripts t 

and k from now on to simplify notation—one estimates by OLS a PRF in which ln𝑍𝑍 is 

substituted for ln𝑌𝑌, the probability limit of the slope coefficient is: 

                                                           
5 Although not always stated explicitly, the GEiV model also assumes that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉𝑡𝑡,𝑄𝑄𝑘𝑘) = 0, at 

least for any t and k for which 𝜆𝜆1𝑡𝑡 ≅ 𝜂𝜂1𝑘𝑘 ≅ 1 (see, e.g.,  Nybom and Stuhler 2016: Eq. 2). This is 

also an empirical assumption. I ignore it in what follows, as it plays no role when the analyses of 

measurement error in the left- and right-side variables are conducted separately. 
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𝛽𝛽�1 =
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑍𝑍 , ln𝑋𝑋)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

= 𝜆𝜆1𝛽𝛽1 +
𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, ln𝑋𝑋)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

.                                              [12] 

Likewise, the probability limit of the slope coefficient, when ln 𝑆𝑆 is substituted for ln𝑋𝑋, is: 

�̌�𝛽1 =
𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑌𝑌 , ln 𝑆𝑆)
𝑉𝑉𝑉𝑉𝑉𝑉(ln 𝑆𝑆)

=
 𝛽𝛽1 𝜂𝜂1 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, ln𝑌𝑌)

(𝜂𝜂1)2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄) .                         [13] 

 Assuming Equation [7], it then follows from Equation [12] that 𝛽𝛽�1 = 𝜆𝜆1𝛽𝛽1, which leads to 

the conclusion that left-side measurement error is unproblematic for estimation as long as the 

measurement age is among the “right points” of the child’ lifecycle, i.e., as long as 𝜆𝜆1 ≅ 1. In 

contrast, 𝛽𝛽�1 will be affected by an upward (downward) bias if 𝜆𝜆1 > 1 (𝜆𝜆1 < 1).   

In turn, assuming Equation [11] it follows from Equation [13] that  

�̌�𝛽1 = 𝛽𝛽1
𝜂𝜂1

(𝜂𝜂1)2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

.                      [14] 

This equation shows that, as long as the parents’ age is among the “right points” of the parents’ 

lifecycle, i.e., as long as  𝜂𝜂1 ≅ 1, estimation with short-run proxies for long-run parental income 

is affected by a textbook form of attenuation bias, whose size depends on the relative magnitudes 

of 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄) and 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) (i.e., on the size of what I later refer as the “variance ratio”). Values of 

𝜂𝜂1 larger than one will tend to exacerbate attenuation bias, while values smaller than one will 

tend to reduce it—and, in fact, if 𝜂𝜂1 is small enough, the result may even be amplification bias. 

 The GEiV model plays two different functions. First, as mentioned earlier, it supplies the 

current methodological justification for the estimation of the conventional IGE by OLS with 

proxy variables that satisfy some conditions (Nybom and Stuhler 2016). Indeed, the GEiV model 

suggests that using measures of economic status pertaining to specific ages should eliminate the 

bulk of lifecycle bias—while the available evidence (which pertains to men) indicates that 

estimating IGEs with parents’ and children’s information close to age 40 is the best approach 
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(Haider and Solon 2006; Böhlmark and Lindquist 2006; Mazumder 2001; Nybom and Stuhler 

2016). In the case of attenuation bias the GEiV model, and many analyses predating it (e.g. 

Solon 1992), suggests pushing 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄) down by using a multiyear average of parents’ income or 

earnings, rather than a single-year measure, as the proxy measure S.6 There is strong evidence 

that the bias can be substantially reduced this way if the average is computed over enough years, 

although there is disagreement on how many years are necessary to eliminate the bulk of it (see 

Mazumder 2005; Chetty et al. 2014: 1582 and Online Appendix E;  Mitnik et al. 2015:7-15; 

Mazumder 2016).  

 The second function of the GEiV model is that it clearly identifies the various potential 

sources of bias in OLS estimates of the conventional IGE, and therefore provides an analytical 

framework to help investigate those biases with the very few datasets where long-run income 

measures can be constructed. The model plays this function directly, as it points to values of 𝜆𝜆1 

and 𝜂𝜂1 not close enough to one, and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄) not small enough, as sources of bias—which is 

what, explicitly or implicitly, the mobility literature has traditionally stressed. But the model also 

plays its second function indirectly, by virtue of being nested within a more general expression 

(represented here by Equations [12] and [13]) for the probability limit of the OLS estimator of 

the conventional IGE with short-run variables. Thus, in contrast to the previous literature, 

Nybom and Stuhler (2016) have emphasized that bias may be the result of the empirical 

assumptions of the GEiV model not holding up.  

                                                           
6 In some cases a multiyear average of the logarithm of parental income has been employed 

instead. This is equivalent to using the geometric mean of parental income over those years as 

the proxy measure. 
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For future reference, it is convenient to provide more details on the specific argument 

advanced by Nybom and Stuhler (2016:245-246). They argued that (a) the parameter 𝜆𝜆1 only 

captures how differences in annual and lifetime income relate on average across children, (b) 

there are good reasons to expect idiosyncratic deviations from this average relationship to 

correlate within families or with parental income, and (c) as a result, we should not expect that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, ln𝑋𝑋) = 0 when 𝜆𝜆1 = 1, which in turn entails that estimation of the IGE when the latter is 

the case would not (fully) eliminate left-side lifecycle bias (see Equation [12]). Their empirical 

analyses with Swedish income data are consistent with this argument, as when 𝜆𝜆1 = 1 (which 

happens with their data when the children are about 35 years old) 𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, ln𝑋𝑋) < 0  and there is 

what we may call a “residual lifecycle bias” of about – 20 percent.7 I later refer to Nybom and 

Stuhler’s argument as the “correlated deviations argument.” 

IV. The GEiVE model 

After substituting short-run for long-run income measures in Equation [3], the IGE of the 

expectation can be estimated using several approaches. These include nonlinear least squares, 

generalized method of moments (GMM), and pseudo maximum likelihood (PML) based on a 

variety of distributions in the linear exponential family (e.g., Poisson, gamma, inverse 

Gaussian).8 Here I assume that estimation is based on the PPML estimator employed by Mitnik 

et al. (2015) and Mitnik and Grusky (2017), as there are good reasons to prefer it over other 

possible estimators of constant-elasticity models (for those reasons, see Santos Silva and 

                                                           
7  Nybom and Stuhler (2016) also found that lifecycle bias is very close to zero around age 40. 

8 PML estimators are consistent regardless of the actual distribution of the error term, provided 

that the mean function is correctly specified (Gourieroux, Monfort, and Trognon 1984).  
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Tenreyro 2006, 2011).  

What are the consequences of estimating the IGE of the expectation with the PPML 

estimator, when short-run proxy variables are substituted for the unavailable long-run variables? 

To answer, I advance here a measurement-error model aimed at playing for the IGE of the 

expectation the same role that the GEiV model has played for the estimation of the conventional 

IGE by OLS. As anticipated in the introduction, developing this model requires addressing 

difficulties absent in the case of the conventional IGE. First, no closed-form expression for the 

probability limit of the PPML estimator (or any other estimator that could be used) is available. 

Second, in nonlinear models the bias induced by right-side measurement error may be in any 

direction, even when there is only one independent variable and the error is classical and additive 

in form (e.g., Carroll et al. 2006:Sec. 3.6; Schennach 2016). This is really problematic, as we 

need to know the direction of the bias, both to develop strategies to reduce it and to be able to 

interpret results. I address these difficulties by using the relevant population-moment condition 

and Taylor-series expansions to derive an approximated closed-form expression for the 

probability limit of the PPML estimator, and by relying on substantive knowledge (e.g., of the 

signs of various covariances) to conduct proofs and to derive the model’s implications. This 

allows me to determine the direction of all potential biases and the factors driving them. 

In the case of left-side measurement error, the assumptions of the GEiVE model I posit 

are the following:  

𝑍𝑍𝑡𝑡 = 𝜃𝜃0𝑡𝑡 + 𝜃𝜃1𝑡𝑡  𝑌𝑌 + 𝑊𝑊𝑡𝑡                                                           [15]      

                           𝐸𝐸(𝑊𝑊𝑡𝑡) = 0                                                                        [16] 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑡𝑡,𝑌𝑌) = 0                                                                        [17]      

𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑡𝑡, ln𝑋𝑋) = 0,                                                                  [18]      
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where 𝑍𝑍𝑡𝑡 ≥ 0 is children’s income or earnings at age t, 𝑌𝑌 ≥ 0, 𝜃𝜃0𝑡𝑡 + 𝑊𝑊𝑡𝑡  is the  (additive) 

measurement error in the short-run measure as a proxy for the long-run measure when 𝜃𝜃1𝑡𝑡 = 1, 

and 𝜃𝜃1𝑡𝑡 captures left-hand lifecycle bias and thus may be different from one and varies with t.  

Focusing now on right-side measurement error, the assumptions are: 

ln  𝑆𝑆𝑘𝑘 = 𝜋𝜋0𝑘𝑘 + 𝜋𝜋1𝑘𝑘 ln𝑋𝑋 + 𝑃𝑃𝑘𝑘                                                    [19]       

                          𝐸𝐸(𝑃𝑃𝑘𝑘) = 0                                                                           [20] 

𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋 ,𝑃𝑃𝑘𝑘) = 0                                                                      [21]      

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑘𝑘,𝑌𝑌) = 0,                                                                           [22]       

where 𝑆𝑆𝑘𝑘 > 0 is parents’ income or earnings at age k, 𝑋𝑋 > 0, 𝜋𝜋0𝑘𝑘 + 𝑃𝑃𝑘𝑘 is the (additive) 

measurement error in the logarithm of the short-run measure as a proxy for the logarithm of the 

long-run measure when 𝜋𝜋1𝑘𝑘 = 1, and 𝜋𝜋1𝑡𝑡 captures right-hand lifecycle bias and thus may be 

different from one and varies with t. (I omit from here on the subscripts t and k to simplify 

notation.) 

It is apparent that the assumptions of the GEiVE model are structurally equivalent to 

those of the GEiV model. Although I use a different notation for the sake of clarity, Equations 

[19]-[21] are identical to Equations [8]-[10]. Equations [15]-[17] are different from Equations 

[5]-[7], as they define a linear projection of 𝑍𝑍 on 𝑌𝑌 (instead of a linear projection of ln𝑍𝑍 on ln𝑌𝑌). 

As a result, unlike in the case of the GEiV model in which 𝑍𝑍𝑡𝑡 > 0 and 𝑌𝑌 > 0, in the GEiVE 

model 𝑍𝑍𝑡𝑡 ≥ 0 and 𝑌𝑌 ≥ 0, i.e., as the left-side measurement error pertains to the income variable 

rather than its logarithm, the model does not preclude that the income variables are zero. Also, 

the assumptions specified by Equations [18] and [22] are not exactly the same as their GEiV 

counterparts. Nevertheless, the structural equivalence is clear: While Equations [15]-[17] and 
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[19]-21] are true by construction, Equations [18] and [22] are empirical assumptions taken to be 

approximately correct.9  

The analyses of the GEiV model compare (a) the probability limit of the OLS estimator 

of the conventional IGE with long-run income variables, with (b) the probability limit of the 

estimator when short-run proxy variables are used instead. Conducting this comparison is 

unproblematic, as it relies on the closed-form expression for the probability limit of the slope of 

an OLS regression. In the case of the PPML estimator the probability limit of the slope is not 

available in closed form, but it is easy to show that 𝛼𝛼1 (the probability limit of the PPML 

estimator 𝛼𝛼�1) solves the population-moment condition 

𝐸𝐸(𝑋𝑋𝛼𝛼1 ln𝑋𝑋)
𝐸𝐸(𝑋𝑋𝛼𝛼1) =

𝐸𝐸(𝑌𝑌 ln𝑋𝑋 )
𝐸𝐸(𝑌𝑌)                                                    [23]     

(Online Appendix, A). This suggests carrying out the analysis in terms of moment conditions. 

Although this is a feasible approach, it leads to long and convoluted proofs and makes the 

interpretation of results less straightforward. For this reason, I resort here to approximated 

closed-form expressions based on moment conditions rather than working with the conditions 

themselves.  

Without any loss of generality, I assume in what follows that 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(ln 𝑆𝑆) =

𝐸𝐸(ln𝑋𝑋) = 1.10 An approximated expression for 𝛼𝛼1 can be obtained by replacing the expectations 

                                                           
9 The GEiVE model also makes a third empirical assumption, i.e., 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑡𝑡,𝑃𝑃𝑘𝑘) = 0 for any t and 

k for which 𝜃𝜃1𝑡𝑡 ≅ 𝜋𝜋1𝑘𝑘 ≅ 1. I did not include it above for the same reason I relegated to a footnote 

the corresponding assumption of the GEiV model (see ftn. 5). 

10 This entails no loss of generality because it can always be achieved by simply changing the 

monetary units used to measure income, i.e., by dividing each children’s income variable by its 
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on the left-hand side of Equation [23] by second-order Taylor-series approximations, and then 

solving the quadratic polynomial on 𝛼𝛼1 that results. This yields (Online Appendix, A): 

𝛼𝛼1 ≅ 𝐶𝐶𝛼𝛼1 − ��𝐶𝐶𝛼𝛼1�
2
− 𝑉𝑉𝛼𝛼1�

1
2 ,                 [24]  

where 𝐶𝐶𝛼𝛼1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 )]−1, 𝑉𝑉𝛼𝛼1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]−1, �𝐶𝐶𝛼𝛼1�
2

> 𝑉𝑉𝛼𝛼1, 𝜕𝜕𝛼𝛼1
𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,ln𝑋𝑋 ) 

> 0, and 

𝜕𝜕𝛼𝛼1
𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

< 0. 

 For simplicity, and as in Haider and Solon (2006), I consider left- and right-side biases 

separately. I start with the analysis of left-side lifecycle bias. Substituting 𝑍𝑍 for 𝑌𝑌 in Equation [3] 

yields the PRF ln𝐸𝐸(𝑍𝑍|𝑥𝑥) = 𝛼𝛼�0 + 𝛼𝛼�1 ln𝑋𝑋. The probability limit of the PPML estimator, 𝛼𝛼�1, is: 

𝛼𝛼�1 ≅ 𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�
2
− 𝑉𝑉𝛼𝛼1�

1
2  ,         [25] 

where: 

𝐶𝐶𝛼𝛼�1 =
1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍, ln𝑋𝑋 )
=

1
𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶( 𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋 )

,   

�𝐶𝐶𝛼𝛼�1�
2

> 𝑉𝑉𝛼𝛼1, 𝜕𝜕𝛼𝛼�1
𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,ln𝑋𝑋) 

> 0,  𝜕𝜕𝛼𝛼�1
𝜕𝜕 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,ln𝑋𝑋) > 0, 𝜕𝜕𝛼𝛼�1

𝜕𝜕𝜃𝜃1
> 0, and 𝜕𝜕𝛼𝛼�1

𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 
< 0. 

Equation [25] is the counterpart to Equation [12]. The former equation identifies for the 

IGE of the expectation, as the latter does for the conventional IGE, the factors that may generate 

left-side bias—and, in fact, together with Equation [24] it offers a full characterization of the 

relationship between 𝛼𝛼1 and 𝛼𝛼�1, while Equation [12] ignores selection bias and thus fails to do 

the same for the relationship between 𝛽𝛽1 and  𝛽𝛽�1. In particular, Equation [25] shows that lifecycle 

bias is fully eliminated if 𝜃𝜃1 = 1 and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) = 0. Indeed, comparing this equation with 

                                                           
mean, and each parental income variable by the exponential of the mean of its logarithmic values 

minus one. 
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Equation [24] indicates that 𝛼𝛼�1 and 𝛼𝛼1 are approximated by the same Taylor-series-based 

expression when those conditions hold. Therefore, under the GEiVE model’s empirical 

assumption specified by Equation [18]—and in strict analogy with what the GEiV model entails 

for the conventional IGE—it follows from Equation [25] that (the bulk of) left-side lifecycle bias 

will be eliminated as long as the measurement age is among the “right points” of the children’s 

lifecycle, i.e., as long as 𝜃𝜃1 ≅ 1. Moreover, given that income-age profiles vary across people 

with different levels of human capital and that the latter are strongly associated to parental 

income, we expect 𝜃𝜃1 to be smaller than one when the children are younger and larger than one 

when they are older. Therefore, as 𝜕𝜕𝛼𝛼�1
𝜕𝜕𝜃𝜃1

> 0, we also expect that estimation with measures 

pertaining to when the children are too young (too old) will lead to underestimation 

(overestimation) of the IGE of the expectation, which is again the same as what the GEiV model 

entails for the conventional IGE (see the Online Appendix, B, for additional comments and for 

proofs for claims made in the last two paragraphs). 

Moving now to right-side biases, substituting 𝑆𝑆 for X in Equation [3] yields the PRF 

ln𝐸𝐸(𝑌𝑌|𝑠𝑠) = 𝛼𝛼�0 + 𝛼𝛼�1 ln 𝑆𝑆. The probability limit of the PPML estimator, 𝛼𝛼�1, is (Online Appendix, 

C): 

𝛼𝛼�1 ≅ 𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�
2
− 𝑉𝑉𝛼𝛼�1�

1
2 ,                    [26] 

where 

𝐶𝐶𝛼𝛼�1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln 𝑆𝑆 )]−1 = [𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃 )]−1 

𝑉𝑉𝛼𝛼�1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln 𝑆𝑆)]−1 = 2 { 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)[(𝜋𝜋1)2 + 𝑉𝑉𝑉𝑉]}−1,    
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𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) is the “variance ratio,” �𝐶𝐶𝛼𝛼�1�

2
> 𝑉𝑉𝛼𝛼�1 , 𝜕𝜕𝛼𝛼�1

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,ln𝑋𝑋 ) 
> 0, 𝜕𝜕𝛼𝛼�1

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃 ) 
> 0, 𝜕𝜕𝛼𝛼�1

𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 
<

0,  𝜕𝜕𝛼𝛼�1
𝜕𝜕 𝑉𝑉𝑉𝑉 

< 0, and  𝜕𝜕𝛼𝛼�1
𝜕𝜕𝜋𝜋1

< 0 (under some conditions specified below). Further, under the GEiVE 

model’s empirical assumption specified by Equation [22], 𝐶𝐶𝛼𝛼�1 reduces to 

𝐶𝐶𝛼𝛼�1 = [𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 )]−1. 

Equation [26] is the counterpart to Equations [13] and [14]. Similarly to what Equation 

[13] does for the conventional IGE, Equation [26] identifies the various right-side factors that 

may jointly affect estimation of the IGE of the expectation with short-run measures of parental 

income. Likewise, it indicates—as does Equation [14] in the case of the conventional IGE—that 

even when Equation [22] holds, estimation of the IGE of the expectation with short-run measures 

of parental income is still compatible with both attenuation and amplification bias, as (𝜋𝜋1)2 +

𝑉𝑉𝑉𝑉 may be larger or smaller than one when 𝜋𝜋1 < 1.  

There is evidence (e.g., Mazumder 2001; Mazumder 2005) that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) follows an 

asymmetric U pattern, reaching its minimum value close to age 40 and increasing significantly as 

parents get older; the variance ratio can be expected to exhibit the same pattern. In addition, for 

the same reason as in the left-side analysis, we expect 𝜋𝜋1 to be smaller than one when the parents 

are younger and larger than one when they are older. As 𝜕𝜕𝛼𝛼�1
𝜕𝜕𝑉𝑉𝑉𝑉

< 0 and a sufficient condition for  

𝜕𝜕𝛼𝛼�1
𝜕𝜕𝜋𝜋1

< 0 is that 𝜋𝜋1 is not too small and 𝑉𝑉𝑉𝑉 ≤ 1, estimation with measures pertaining to when the 

parents are “too old” should lead to underestimating the IGE of the expectation, while using 

measures pertaining to when they are “too young” may lead to over or underestimating the IGE, 

depending on the exact values of 𝑉𝑉𝑉𝑉 and 𝜋𝜋1. All this is, again, exactly as in the case of the GEiV 

model. 
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Crucially, estimation with short-run proxies for long-run parental income will be affected 

by attenuation bias when 𝜋𝜋1 ≅ 1. Indeed, when this equality holds exactly 𝐶𝐶𝛼𝛼�1 = 𝐶𝐶𝛼𝛼1 and 𝑉𝑉𝛼𝛼�1 

becomes: 

𝑉𝑉𝛼𝛼�1 = 2 { 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)[1 + 𝑉𝑉𝑉𝑉]}−1.  

Therefore 𝛼𝛼�1 < 𝛼𝛼1 and there is attenuation bias, with the magnitude of the bias determined by 

the size of the variance ratio (see Online Appendix, C, for additional comments and for proofs 

for claims in the last three paragraphs). 

The GEiVE model plays for the IGE of the expectation the same functions that the GEiV 

model plays for the conventional IGE. First, together with the “nesting equations” (Equations 

[25] and [26]), it identifies the various potential sources of bias in estimates of the IGE of the 

expectation with the PPML estimator, and supplies an analytical framework to help investigate 

those biases. Second, it provides a methodological justification for estimating the IGE of the 

expectation with proxy variables that satisfy some conditions. With regards to attenuation bias, 

the GEiVE model suggests that researchers use averages of parental income or earnings over 

several years, rather than annual measures, so as to reduce 𝑉𝑉𝑉𝑉𝑉𝑉(P) as much as possible (thus 

providing an IGE-of-the-expectation counterpart to the approach most often used with the 

conventional IGE). To minimize lifecycle biases, the GEiVE model suggests using measures of 

children’s and parents’ economic status pertaining to ages in which 𝜃𝜃1 ≅ 1 and 𝜋𝜋1 ≅ 1, 

respectively. 

V. Empirical analyses 

Data and estimation 

The empirical analyses of this section are based on two PSID samples. The first sample is 

geared towards studying patterns and magnitudes of left-side lifecycle biases as well as testing 
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the GEiVE model’s account of those biases, both of which require obtaining estimates of the IGE 

of the expectation based on measures of children’s long-run income. In line with this 

requirement, this sample includes information on children born between 1952 and 1958 and 

present in the PSID in income year 2012.11 Any year between 1979 and 2012 in which a member 

of these cohorts was a household head or a household head’s spouse, and was between 26 and 55 

years old, is included in the sample, that is, the observations are children-years. The sample has 

observations on 785 children, each of which is observed 21 times on average. The children are 

not observed every year both because the PSID only reports the needed income information for 

household heads and spouses (or long-term partners), rather than for all children, and because 

starting in (survey) year 1997 the PSID has been fielded biannually. I use information on 

children’s total family income (as adults) and on sons’ individual earnings in all years they are 

available, and on parents’ average total family income and age when the children were 15-17 

years old. I constructed approximate long-run measures by averaging the children’s income and 

earnings information across all available years.  

The second sample is geared towards studying patterns and magnitudes of right-side 

biases. This task requires estimating the IGE of the expectation with measures of parental 

income obtained by averaging many years of parental information. In accordance with this 

requirement the sample includes information on children born between 1966 and 1974, for which 

25 years of parental data—when the children were between 1 and 25 years old—are available.  

                                                           
11 The PSID collects income information pertaining to the previous calendar year. From now on, 

I leave the “income-year” qualifier implicit. Children’s ages always refer to their ages in income 

(rather than survey) years.  
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The average age of parents when the children are 13 years old is very close to 40; later I refer to 

this fact by saying that the parental information is “centered around age 40.” As in the first 

sample, the observations in this sample are children-years. Any year in which a member of the 

1966-1974 cohorts was observed in the PSID, and was between 24 and 38 years old, is included 

in the sample. The sample has observations on 1,274 children, each of which is observed 6.7 

times on average. In most analyses, however, I use a subsample pertaining to ages 36-38 (I rely 

on the larger sample in analyses reported in the Online Appendix). I use information on 

children’s total family income (as adults) and sons’ individual earnings, and on parents’ average 

family income and age when the children were 1-25 years old. I use the latter information to 

construct approximate measures of long-run parental income. Table 1 presents descriptive 

statistics for both samples. Section D of the Online Appendix provides additional details on the 

samples and variables. 

 I estimate the IGE of the expectation with the PPML estimator, and employ sampling 

weights and compute cluster-corrected robust standard errors in all cases. As the relationship 

between long-run and short-run measures of income and earnings varies with the age at 

measurement (both for parents and children), it is customary to include polynomials on 

children’s and parents’ ages as controls when estimation is based on short-run measures. 

However, as all IGE estimates I report pertain to subsamples of the samples described above, and 

in those subsamples the variation in children’s ages is quite small, controlling for children’s age 

is unnecessary. Mitnik et al. (2015:34) have argued that the age at which parents have their 

children is not exogenous to their income, that parental age is causally relevant for their 

children’s life chances, and that insofar as we want persistence measures to reflect the gross 

association between parental and children’s income we should not control for parental age. Here 
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I present estimates from models without controls for parental age, but estimates from models 

with such controls are very similar (and are reported in the Online Appendix).  

 My main empirical results are presented and discussed in the next two subsections. 

Additional results, pertaining to interactions between left-side and right-side sources of bias, are 

available in Section E of the Online Appendix. 

Left-side lifecycle bias 

 Figures 1 and 2 present evidence on left-side lifecycle bias, and its determinants, for the 

IGEs of expected family income and earnings (in the case of earnings I focus on sons, as is 

customary). In these figures, the long-run IGE is the IGE of the approximate long-run family 

income of children (Figure 1) or long-run earnings of sons (Figure 2) with respect to average 

parental income when the children were 15-17 years old. For the purposes of the analysis here, 

the latter income is assumed to be the true long-run parental income. The estimated long-run IGE 

values of 0.4 (family income) and 0.39 (earnings) are undoubtedly affected by right-side 

attenuation bias (as the parental measure is based on only three years of information). But given 

that I use the same measure of parental income to compute long-run and short-run IGEs (i.e., 

IGEs based on the long-run and the short-run measures of children’s income or earnings, 

respectively), it is still possible to draw clear conclusions regarding left-side lifecycle bias.  

 The figures include four panels. In each of these panels, estimation is based on different 

sets of subsamples. In the upper-left panel of each figure, the subsamples only include children-

income observations pertaining to the exact age indicated in the horizontal axis. In the other three 

panels estimates are based on progressively larger samples, which include observations 

pertaining to three-, five-, and seven-year intervals centered on the target age. As more 

observations are included in the subsamples, short-run point estimates are less affected by 
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sampling variability and the age-profile of the left-side lifecycle bias becomes progressively 

clearer.  

 The middle curves in the four panels of Figures 1 and 2 show the relationship between 

short-run IGEs and children’s ages.12 Estimates vary markedly with the age at which children’s 

incomes and sons’ earnings are observed, ranging from 0.23 to 0.45 in the case of family income, 

and from 0.15 to 0.47 in the case of earnings; these ranges of estimates entail quite different 

levels of economic persistence. The shape of the curves is consistent with expectations. For both 

family income and earnings, short-run IGEs based on children’s information from their mid-

twenties greatly underestimate the long-run IGE, while the downward bias decreases steadily as 

the information is obtained closer to their late thirties. IGEs based on information pertaining to 

their late thirties and early forties appear nearly free of lifecycle bias, while those based on 

information past age 45 are affected by progressively larger upward biases; the latter, however, 

are comparatively smaller than those that result from using income information pertaining to 

young ages, as evidenced by the fact that the curves are substantially steeper before age 38 than 

after age 45 (this is clearest in the bottom-right panels, where the curves are smoothest). Lastly, 

comparing the four panels within each figure indicates that, at least with small samples like those 

employed here, short-run estimates based on one year of children’s information may be affected 

by relatively large upward or downward biases even when that information is obtained close to 

                                                           
12 All estimates underlying these curves, and the corresponding standard errors, can be found in 

Tables E1 and E2 of the Online Appendix; these tables also include IGE estimates from models 

with controls for parental age. 
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age 40, and that these biases can be reduced substantially, if not eliminated, by combining 

income information from a few years around that age.13 

 The top curve in each panel of Figures 1 and 2 shows how 𝜃𝜃1 changes with the children’s 

age. The parameter increases with age up to their early fifties—monotonically in all but the 

exact-age curves, which are quite noisy—at which point the curves turn downward. Consistent 

with expectations, the values of 𝜃𝜃1 are much smaller than one when the children are younger and 

much larger than one when they are older (up to their early or mid-fifties). The parameter is 

equal to one around ages 41 (family income) and 39 (earnings). The GEiVE model predicts that 

at 𝜃𝜃1 = 1 the short-run IGE will be approximately equal to the long-run IGE, and that the former 

will tend to be smaller (larger) than the latter when 𝜃𝜃1 < 1 (𝜃𝜃1 > 1). The prediction that the bulk 

of left-side lifecycle bias will disappear when 𝜃𝜃1 = 1 is derived under the fallible assumption 

that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,𝑋𝑋) ≅ 0 at that value of 𝜃𝜃1. Moreover, Nybom and Stuhler’s (2016) correlated-

deviations argument also applies (mutatis mutandis) in the present context, thus providing a 

positive reason to doubt the appropriateness of that assumption. The assumption nevertheless 

holds with a high degree of approximation, as indicated by the bottom curves in all four panels of 

the figures; indeed, these curves show that when 𝜃𝜃1 = 1, 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(exp(𝑊𝑊),𝑋𝑋) is very close to zero 

in all cases.14 As a result, the residual lifecycle biases when 𝜃𝜃1 = 1 are in the -1.6 to 5.4 percent 

                                                           
13 A similar point was made by Nybom and Stuhler (2016:264) for the conventional IGE. They 

suggested averaging children’s income information across years (within children), which has the 

same effect as pooling years of information into one sample (as I do here). 

14 I substituted the correlation for the covariance for scaling purposes, and because this made it 

easier to include all curves in one graph. 

25



range for family income and in the 1.0 to 8.4 percent range for earnings (substantially less, in 

absolute value, than the residual bias of – 20 percent reported by Nybom and Stuhler for the IGE 

of the geometric mean). The figures also show that when 𝜃𝜃1 < 1 the short-run IGEs tend to 

underestimate the long-run IGE, while the opposite happens when 𝜃𝜃1 > 1, as expected. 

Importantly, short-run IGE estimates at ages in which 𝜃𝜃1 is somewhat larger or smaller than one 

exhibit a relatively small lifecycle bias. This is important from a practical point of view, as it 

suggests that IGE estimates based on measures of children’s income or earnings obtained close 

to age 40 will exhibit a small amount of bias even if 𝜃𝜃1 is not exactly one (of course, provided 

that the samples are large enough). 

Right-side biases 

Figure 3 presents evidence on right-side lifecycle bias and its determinants, for the IGE 

of children’s family income (left panel) and sons’ earnings (right panel). Using a strategy similar 

to that used in the left-side analysis, in this figure the long-run IGEs are computed with 

children’s income information at ages 36-38 and the approximate long-run parental income. In 

each panel, the middle curve shows the relationship between short-run IGEs, estimated with 

parental-income measures based on five years of information, and parental age.15  The estimates 

vary significantly across ages, covering the ranges 0.43-0.60 (family income) and 0.48-0.65 

(earnings). Both the location and shape of the short-run IGE curves are consistent with 

expectations. In the case of family income, the IGE curve first rises with age, up to age 34, and 

                                                           
15 All estimates underlying these curves, and the corresponding standard errors, can be found in 

Tables A3 and A4 of the Online Appendix. Those tables also include estimates generated with 

measures of parental income based on 1 to 25 years of information, at various parental ages. 
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then decreases nearly monotonically up to age 50. In the case of earnings, the IGE estimates do 

not vary as much up to age 44, but fall very rapidly after that. Each curve is always below the 

corresponding long-run IGE line, reflecting the attenuation effect associated to using five years 

of parental information. Nevertheless, in the case of family income the bias is close to nil around 

age 34. This suggests that amplification bias—mentioned as a theoretical possibility when I 

presented the GEiVE model—may actually occur at younger ages if the parental income measure 

is based on more than five years of information. This is indeed the case (see the Online 

Appendix, Tables E3 and E4), but the observed biases are very small, e.g., about 2 percent, at 

age 33, for the IGE of family income estimated with nine years of information (compared to that 

estimated with 25 years at age 40).  

As expected, the 𝜋𝜋1 curves increase monotonically with parental age while the variance-

ratio curves exhibit an asymmetric-U shape. As 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉(𝑃𝑃,𝑌𝑌) is close to zero at all parental ages, 

the amount of lifecycle bias we observe at each age is mostly determined by 𝜋𝜋1 and the variance 

ratio. Although the interaction between these two may lead to different shapes for the short-run 

IGE curve—as is apparent from comparing the family-income and earnings IGE curves in Figure 

3—the fact that 𝜋𝜋1 and the variance ratio both increase when the parents are older suggests that, 

typically, IGE estimates will fall markedly, or at least more rapidly, when parental income 

pertains to older ages. The evidence in the figure suggests that the variance ratio starts to 

increase, and the IGE estimates starts to fall more rapidly, when the parents are in their mid-

forties. 

The GEiVE model entails that when 𝜋𝜋1 = 1 the short-run IGE will be necessarily 

affected by attenuation bias. This prediction is derived under the fallible assumption that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃,𝑌𝑌) ≅ 0 at that value of 𝜋𝜋1. The prediction is confirmed in Figure 3, where 𝜋𝜋1 = 1 around 
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age 37. However, this fact is not particularly informative, as all short-run estimates in the figure 

are affected by attenuation bias, regardless of parental age. As indicated above, this is not 

necessarily the case when measures based on more years of information are employed, which 

therefore provide a stronger test. Results included in Table 2, which are discussed below, show 

that IGE estimates are always affected by attenuation bias when  𝜋𝜋1 = 1, regardless of the 

number of years 

The standard approach utilized to assess the extent of attenuation bias that results from 

the use of short-run parental income, and to ascertain how many years of parental information 

are needed to eliminate the bulk of that bias, involves (a) estimating the IGE with parental-

income measures based on progressively more years of information centered at age 40 (or some 

other fixed age), and (b) comparing these short-run estimates with the corresponding long-run 

estimate or, much more commonly, to an asymptotic IGE value extrapolated from the pattern of 

the short-run estimates.16 This is an useful approach, but it has one limitation: As the age at 

which 𝜋𝜋1 = 1 may be different from 40 and may vary with the number of years of information 

used to compute parental income, the measured attenuation bias most likely reflects not only the 

effect of the years of information employed but also a “lifecycle effect,” i.e., the effect of 𝜋𝜋1 

being different from one. An alternative approach, which isolates the effect of adding additional 

                                                           
16 The comparison with an asymptotic value is most often implicit in arguments along the lines 

that the fact that the differences between IGE estimates based on n, n + 1 and n + 2 years of 

information are small and decreasing means that n + 2 years of information are enough to 

eliminate the bulk of attenuation bias.  
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years of information and which can only be implemented when a long-run measure of parental 

income is available, is to keep 𝜋𝜋1 fixed at one (rather than fixing the parents’ age).  

Figure 4 and Table 2, which present the results obtained under both approaches, provide 

clear evidence on the patterns and magnitudes of attenuation bias in the estimation of the IGE of 

the expectation. The panels on the left of the figure show how the estimates of the family-income 

IGE (top panel) and earnings IGE (bottom panel) change as more years of information are used, 

while the panels on the right show the corresponding values of the variance ratio. Table 2 

displays the magnitudes of the attenuation biases, expressed as percentages, and the values of 𝜋𝜋1 

under the first approach and of parental age under the second.  

With one year of parental information 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) is larger than 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) under both 

approaches, and the variance ratios are very substantial in magnitude. Partly for this reason, the 

attenuation bias is nearly 49 percent (family income) and 59 percent (earnings) under the 

standard approach. However, these biases also reflect substantial lifecycle effects, as with one 

year of information the value of 𝜋𝜋1 at age 40 is significantly larger than one. The biases fall to 

about 25 percent (family income) and 37 percent (earnings) with the alternative approach (as 𝜋𝜋1 

is equal to one around age 35 rather than 40).  

Assessing the magnitude of attenuation biases when parental income measures are based 

on three and on five years of information is important, as empirical research is quite often based 

on such measures. There is a very large fall in the variance ratios, and a substantial shrinkage of 

the values of 𝜋𝜋1 towards one (of course, only under the standard approach), when three years of 

information are used instead of one; moreover, the variance ratio is always substantially smaller 

than one if at least three years are employed, and decreases steadily as more years of information 

are added, under both approaches. The large fall in the variance ratio when moving from one to 
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three years of information, together with the concomitant shift of 𝜋𝜋1 towards one under the 

standard approach, translate into a large increase in IGE estimates, and is accompanied by a large 

reduction in the differences in results across approaches. Nevertheless, with three years of 

information the attenuation bias is still about 20 percent under the standard approach (for both 

family income and earnings), and about 13 percent (family income) and 23 percent (earnings) 

under the alternative approach. With five years of information, attenuation bias is around 15 

percent with the former approach (both income measures), and about 8 percent (family income) 

and 18 percent (earnings) with the latter approach.  

As indicated earlier, the issue of how many years of parental information are needed to 

eliminate the bulk of attenuation bias has been a central concern in the literature (e.g., Mazumder 

2005; Mazumder 2016). Stipulating that this happens when attenuation bias is smaller than five 

percent, the results of Table 2 suggests that, in the case of the IGE of the expectation, achieving 

this goal with survey data requires employing at least 13 years of parental information (when 

parental age is measured around age 40).17  

It is possible, however, that fewer years of information are needed with tax and other 

administrative data, as Chetty et al. (2014) claimed to be the case for the conventional IGE. One 

possibility is that administrative data are less affected by measurement error (i.e., that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) is 

smaller with these data). Another reason, which does not seem to have been discussed previously 

in the literature, is that tax-based data cover much better than survey data the right tail of income 

distributions (Fixler and Johnson 2014). Therefore, we can expect 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) to be significantly 

                                                           
17 In the case of earnings this conclusion is based on computing moving averages, each covering 

three consecutive estimates (e.g., those pertaining to 1, 3 and 5 years of parental information). 
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larger with the former than with the latter data. An attenuation-bias analysis by Mitnik et al. 

(2015: Appendix A) nevertheless suggests that at least nine years are necessary with 

administrative data, as their report concluded that although estimates appeared to be reaching a 

plateau by year nine, it couldn’t be ruled out that they would grow further if even more years 

were used. 

VI. Conclusion  

The IGE estimated in the mobility literature has been widely misinterpreted as pertaining 

to the expectation of children’s income, when it actually pertains to its geometric mean. 

Moreover, the (implicit) reliance on the geometric mean to index conditional income 

distributions makes studying gender and marriage dynamics in intergenerational processes a very 

difficult enterprise and leads to IGE estimates affected by substantial selection biases. For these 

reasons, Mitnik and Grusky (2017) have called for replacing the conventional IGE by the IGE of 

the expectation. To make this possible, mobility scholars need to have available a measurement-

error model that plays for the estimation of the IGE of the expectation the role that Haider and 

Solon’s (2006) GEIV model has played for the estimation of the conventional IGE.  

After deriving an approximated closed-form expression for the probability limit of the 

PPML estimator—something that may be useful beyond the context of the current paper—I have 

advanced here the needed formal model, that is, a generalized error-in-variables model for the 

estimation of the IGE of the expectation with short-run income variables. The GEIVE model 

provides a joint analysis of the biases that may affect estimation of the IGE of the expectation 

with short-run income measures, and supplies a methodological justification for the estimation of 

that IGE with the PPML estimator and proxy variables that satisfy some conditions. 

The results of the empirical analyses with PSID data offer strong support for the account 
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of lifecycle and attenuation biases provided by the GEiVE model. The empirical results also 

indicate that the strategy most commonly employed to estimate the conventional IGE by OLS—

using a multiyear measure of parental income centered close to age 40 and a measure of 

children’s income obtained around that age—also works well for the estimation of the IGE of the 

expectation with the PPML estimator. Further, the results suggests that—at least with survey 

data, and similarly to what has been reported for the conventional IGE (Mazumder 2016: Tables 

1 and 2)—estimates of the IGE of the expectation with parental measures based on three to five 

years of information, that is, the measures often used by mobility scholars, would be affected by 

substantial attenuation bias. In fact, it appears that at least 13 years of information are needed to 

eliminate the bulk of that bias.  

Our methodological knowledge regarding the estimation of the IGE of the expectation 

with short-run proxy measures needs to be developed further, and in several different directions. 

Nevertheless, it seems appropriate to conclude that the measurement-error model and the 

evidence presented in this paper eliminate the key obstacle for making the IGE of the expectation 

the workhorse elasticity for the study of intergenerational economic mobility. 
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Table 1: Descriptive Statistics  (unweighted values)

All Sons All Sons

Child's gender (% female) 52.2 - 48.6 -

Child's age
Mean 38.4 38.4 30.5 30.5
Standard deviation 8.3 8.3 4.4 4.4

Child's family income
Mean 80,845 - 81,586 -
Standard deviation 82,230 - 73,606 -

Child's earnings
Mean - 55,213 - 54,768
Standard deviation - 53,848 - 50,404

Average parental age 
Mean 44.6 44.7 40.4 40.4
Standard deviation 6.8 6.9 6.3 6.2

Average parental income
Mean 70,395 72,065 88,100 84,377
Standard deviation 54,371 45,501 68,379 56,641

Number of observations 16,497 7,881 8,579 4,121
Number of children 785 377 1,274 655

Monetary values in 2012 dollars (adjusted by inflation using the Consumer Price Index for Urban Consu-
mers - Research Series). In the first sample average parental income and age pertain to when the children
were 15-17 years old, while children's family income and sons' earnings pertain to when they were 26-55
years old. In the second sample average parental income and age pertain to when the children were 1-25 
years old, while children's family income and sons' earnings pertain to when they were 24-38 years old.
The empirical analyses are based on various subsamples of the samples described in this table.

Sample I: Birth cohorts 1952-1958 Sample II: Birth cohorts 1966-1974
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Online Appendix 

Estimating the Intergenerational Elasticity of Expected Income with Short-Run Income Measures: 
A Generalized Error-in-Variables Model 

This appendix includes mathematical proofs and some additional comments about the GEiVE 

model, additional information on the PSID samples and variables used in the empirical analyses, the 

estimates underlying the IGE curves presented in Figures 1 to 4, and additional empirical results. The 

proofs and comments appear in the same order in which the associated results were introduced in the 

main text. The information about the PSID samples and variables, and the empirical results, are included 

in the last two sections of the appendix. 

I refer to equations presented in the main text using the equation numbers employed there. When 

equations from the main text are reproduced in this appendix, I rely on their original numbers in the main 

text.  

A. Moment problem solved by the IGE of the expectation and closed-form approximation to the

probability limit of the PPML estimator

I derive here the population moment condition specified by Equation [23], and the approximate 

closed-form expression for 𝛼𝛼1 based on second-order Taylor-series approximations (Equation [24]) and 

related expressions. I also show that the PPML estimator of 𝛼𝛼1 solves the sample analog to the moment 

condition specified by Equation [23]. 

Equation [3] can be written in additive-error form as: 

𝑌𝑌 = exp(𝛼𝛼0 + 𝛼𝛼1 ln𝑋𝑋) + Ψ,                                  [𝐴𝐴1]         

where 𝐸𝐸(Ψ| ln𝑥𝑥) = 0. This zero conditional mean assumption entails 𝐸𝐸(Ψ ln𝑋𝑋) = 0. Replacing Ψ by its 

expression as a function of the parameters results in the following population moment condition: 

𝐸𝐸(𝑌𝑌 ln𝑋𝑋) − exp(𝛼𝛼0)𝐸𝐸(𝑋𝑋𝛼𝛼1 ln𝑋𝑋) = 0.         

Taking expectation over the population distribution of X in Equation [3], after exponentiating it, leads to 

exp(𝛼𝛼0) = 𝐸𝐸(𝑌𝑌)
𝐸𝐸(𝑋𝑋𝛼𝛼1). Substituting in the last expression gives:

𝐸𝐸(𝑋𝑋𝛼𝛼1 ln𝑋𝑋)
𝐸𝐸(𝑋𝑋𝛼𝛼1) =

𝐸𝐸(𝑌𝑌 ln𝑋𝑋)
𝐸𝐸(𝑌𝑌) .                 [23] 

The closed-form approximation to 𝛼𝛼1 is based on the following second-order Taylor-series 

approximations around 𝐸𝐸(ln𝑋𝑋) for the two expectations on the LHS of Equation [23]: 

 𝐸𝐸([exp ln𝑋𝑋]𝛼𝛼1 ln𝑋𝑋) ≅ [exp𝐸𝐸(ln𝑋𝑋)]𝛼𝛼1𝐸𝐸(ln𝑋𝑋) + 0.5 𝛼𝛼1 [exp𝐸𝐸(ln𝑋𝑋)]𝛼𝛼1(𝛼𝛼1 𝐸𝐸(ln𝑋𝑋) + 2) 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

 𝐸𝐸([exp ln𝑋𝑋]𝛼𝛼1) ≅ [exp𝐸𝐸(ln𝑋𝑋)]𝛼𝛼1 + 0.5 [𝛼𝛼1]2 [exp𝐸𝐸(ln𝑋𝑋)]𝛼𝛼1   𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋). 
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Assuming without any loss of generality that 𝐸𝐸(𝑌𝑌) = 𝐸𝐸(ln𝑋𝑋) = 1 (see ftn. 10 in the main text), these two 

approximations become: 

𝐸𝐸([exp ln𝑋𝑋]𝛼𝛼1 ln𝑋𝑋) ≅ exp(𝛼𝛼1) + 0.5 𝛼𝛼1  exp(𝛼𝛼1) (𝛼𝛼1 + 2) 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

𝐸𝐸([exp ln𝑋𝑋]𝛼𝛼1) ≅ exp(𝛼𝛼1) + 0.5 [𝛼𝛼1]2  exp(𝛼𝛼1)  𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋). 

Substituting these expressions on the LHS of Equation [23] and simplifying yields: 
1 + 0.5 𝛼𝛼1 (𝛼𝛼1 + 2) 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

1 + 0.5 [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) ≅ 𝐸𝐸(𝑌𝑌 ln𝑋𝑋).        [𝐴𝐴2] 

Equation [A2] defines a second-degree polynomial equation on 𝛼𝛼1, with solutions: 

𝑆𝑆1, 𝑆𝑆2 =
1

𝐸𝐸(𝑌𝑌 ln𝑋𝑋) − 1
± �

1
[𝐸𝐸(𝑌𝑌 ln𝑋𝑋) − 1]2 −

2
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�

1
2
. 

As an increase in 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋), given 𝐸𝐸(𝑌𝑌 ln𝑋𝑋), should be expected to produce a decrease in the value of  

𝛼𝛼1, the solution with a negative second term is the relevant one. We then have: 

𝛼𝛼1 ≅
1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) + 𝐸𝐸(𝑌𝑌)𝐸𝐸(ln𝑋𝑋) − 1
− �

1
[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) + 𝐸𝐸(𝑌𝑌)𝐸𝐸(ln𝑋𝑋) − 1]2 −

2
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�

1
2
 

𝛼𝛼1 ≅
1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) − �
1

[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)]2 −
2

𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�
1
2
, 

which may be written as: 

𝛼𝛼1 ≅ 𝐶𝐶𝛼𝛼1 − ��𝐶𝐶𝛼𝛼1�
2 − 𝑉𝑉𝛼𝛼1�

1
2 ,                 [24]  

where  

𝐶𝐶𝛼𝛼1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 )]−1 

𝑉𝑉𝛼𝛼1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]−1. 

 For Equation [24] to be valid, it cannot be the case that  �𝐶𝐶𝛼𝛼1�
2 < 𝑉𝑉𝛼𝛼1 . I show next that the 

opposite inequality holds: 

�𝐶𝐶𝛼𝛼1�
2 ≥ 𝑉𝑉𝛼𝛼1 

[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)]−2 ≥ 2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]−1 

[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)]2 ≤
1
2

 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

[𝐸𝐸(𝑌𝑌 ln𝑋𝑋) − 1]2 ≤
1
2

 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋). 

Using now Equation [A2] to substitute an expression for 𝐸𝐸(𝑌𝑌 ln𝑋𝑋) in terms of 𝛼𝛼1 in the last inequality: 

�
1 + 0.5 𝛼𝛼1 (𝛼𝛼1 + 2) 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

1 + 0.5 [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) − 1�
2

≤
1
2

 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

2



�
𝛼𝛼1𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)

1 + 1
2

 [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)
�

2

≤
1
2

 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

[𝛼𝛼1]2[𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]2 ≤ 0.5 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) [1 + 0.5 [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]2 

[𝛼𝛼1]2𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) ≤   
1
2

+
1
8

 [𝛼𝛼1]4 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]2 +
1
2

 [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

0 ≤   
1
2

+
1
8

 [𝛼𝛼1]4 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]2 −
1
2

 [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

0 ≤   1 +
1
4

 [𝛼𝛼1]4 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]2 −  [𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋). 

The minimum of the expression on the RHS of the last inequality is zero and occurs when 

[𝛼𝛼1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) = 2, so the inequality always holds and �𝐶𝐶𝛼𝛼1�
2 ≥ 𝑉𝑉𝛼𝛼1. 

 In the text I also reported the sign of two derivatives. The derivatives are: 
𝜕𝜕𝛼𝛼1

𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) 
= −

1
[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)]2 +

1

[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)]3  � 1
[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,ln𝑋𝑋)]2 −

2
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�

1
2

                 

= −
1

[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋)]2
⎣
⎢
⎢
⎡
1 −

1
𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,ln𝑋𝑋)

 � 1
[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,ln𝑋𝑋)]2 −

2
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�

1
2
⎦
⎥
⎥
⎤

> 0 

𝜕𝜕𝛼𝛼1
𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

= −
1

� 1
[𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,ln𝑋𝑋)]2 −

2
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�

1
2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]2

< 0,                                         

where I have safely assumed that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) > 0. 

So far I have assumed without argument that the probability limit of 𝛼𝛼�1, the PPML estimator of 

the IGE of the expectation, is the population parameter 𝛼𝛼1 that solves Equation [23]. A simple 

justification can be provided by characterizing the PPML estimator as an “analogous estimator.” An 

analogous estimator is a sample statistic that has the same property in the sample as the target parameter 

has in the population; such an estimator is consistent under quite general conditions (e.g., Manski 1988). 

The PPML estimator of the IGE of the expectation can be characterized as an analogous estimator of the 

IGE of the expectation because it solves the sample analog to Equation [23].  

 Indeed, the first-order conditions solved by the PPML estimator in our context are: 

� [𝑦𝑦𝑖𝑖 − exp(𝛼𝛼�0 + 𝛼𝛼�1 ln𝑥𝑥𝑖𝑖)] = 0
𝑛𝑛

1
 

� [𝑦𝑦𝑖𝑖 − exp(𝛼𝛼�0 + 𝛼𝛼�1 ln 𝑥𝑥𝑖𝑖)] ln 𝑥𝑥𝑖𝑖 = 0
𝑛𝑛

1
. 

Dividing by n, the sample size, and rearranging gives: 
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𝑦𝑦� = exp(𝛼𝛼�0) 𝑥𝑥𝛼𝛼�1����� 

𝑦𝑦𝚤𝚤 ln𝑥𝑥𝚤𝚤�������� = exp(𝛼𝛼�0) 𝑥𝑥𝛼𝛼�1 ln 𝑥𝑥����������, 

which can be combined in the obvious way  to produce the sample analog to the population condition of 

Equation [23]: 

𝑥𝑥𝛼𝛼�1 ln𝑥𝑥����������

𝑥𝑥𝛼𝛼�1����� =
𝑦𝑦 ln 𝑥𝑥�������
𝑦𝑦�

. 

B. Estimation of the IGE of the expectation with short-run measures of children’s economic status 

and the PPML estimator 

I derive here Equation [25], prove related results, and provide some additional comments on the 

relationship between Equation [25] and Equation [12].  

Substituting 𝑍𝑍 for 𝑌𝑌 in Equation [3] yields the PRF ln𝐸𝐸(𝑍𝑍|𝑥𝑥) = 𝛼𝛼�0 + 𝛼𝛼�1 ln𝑋𝑋, where 𝛼𝛼�1 is the 

probability limit of the PPML estimator of the IGE of the expectation with short-run measures of 

children’s income. The approximate closed-form expression for 𝛼𝛼�1 is: 

𝛼𝛼�1 ≅ 𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�
2 − 𝑉𝑉𝛼𝛼1�

1
2 ,                   [25]   

where 𝑉𝑉𝛼𝛼1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]−1, 𝐶𝐶𝛼𝛼�1 = 1
𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍,ln𝑋𝑋 )

, and �𝐶𝐶𝛼𝛼�1�
2 > 𝑉𝑉𝛼𝛼1 . Using Equation [15] to substitute Z 

out, 𝐶𝐶𝛼𝛼�1 becomes: 

𝐶𝐶𝛼𝛼�1 =
1

𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃0 + 𝜃𝜃1Y + W, ln𝑋𝑋 )
=

1
𝜃𝜃1 𝐶𝐶𝐶𝐶𝐶𝐶(Y , ln𝑋𝑋) + 𝐶𝐶𝐶𝐶𝐶𝐶(W, ln𝑋𝑋 )

 .           [𝐶𝐶2]          

The last expression for 𝐶𝐶𝛼𝛼�1 is the one I reported in the main text as part of Equation [25]. 

When 𝜃𝜃1 = 1, 𝐶𝐶𝛼𝛼�1 reduces to: 

𝐶𝐶𝛼𝛼�1 =
1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋). 

If, in addition, the empirical assumption of the GEiV-E model regarding left-side measurement error (i.e., 

Equation [18]) also holds, then 𝐶𝐶𝛼𝛼�1 further reduces to: 

𝐶𝐶𝛼𝛼�1 =
1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 )
= 𝐶𝐶𝛼𝛼 ,        

which indicates that there is no left-side lifecycle bias.   

In the main text I pointed out that Equation [25] is the IGE-of-the-expectation counterpart of 

Equation [12]. Like 𝜆𝜆1 and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, ln𝑋𝑋) in the latter equation (see Nybom and Stuhler 2016), in the 

former equation values of 𝜃𝜃1 different from one indicate how much income differences among children at 

the relevant age tend to deviate from the corresponding differences in their long-run incomes, while 

values of 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) different from zero represent both stochastic shocks to children’s income and 

deviations from “average income-age profiles” whose intensity are positively or negatively correlated to 
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the logarithm of their parents’ long-run income. As 𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊,ln𝑋𝑋) > 0 and 𝜕𝜕𝛼𝛼�1

𝜕𝜕𝜃𝜃1
> 0 (see below), it follows 

that, similarly to analyses carried out with Equation [12] in the case of the conventional IGE: 

(a) if 𝜃𝜃1 < 1 (𝜃𝜃1 > 1) and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) = 0, then 𝛼𝛼�1 < 𝛼𝛼1 (𝛼𝛼�1 > 𝛼𝛼1), and 

(b) if 𝜃𝜃1 = 1 and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) < 0 (𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) > 0), then 𝛼𝛼�1 < 𝛼𝛼1 (𝛼𝛼�1 > 𝛼𝛼1). 

In addition, as we can expect 𝜃𝜃1 to be smaller than one when the children are younger and larger than one 

when they are older, estimation with measures pertaining to when the children are too young (too old) 

should lead to underestimation (overestimation) of the IGE of the expectation, exactly as in the case of the 

conventional IGE. 

I also pointed out that Equation [25] offers a better characterization of left-side potential biases 

when the IGE of the expectation is estimated with short-run measures that Equation [12] does for the 

conventional IGE. Indeed, although Equation [12] identifies the biases generated by the violation of the 

left-side empirical conditions 𝜆𝜆1 = 1 and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉, ln𝑋𝑋) = 0, it neglects the selection bias that almost 

certainly results from dropping children with zero short-run income (Mitnik and Grusky 2017). Therefore, 

it offers a characterization of the relationship between 𝛽𝛽�1 and 𝛽𝛽1 that is not fully correct. As this bias is 

not an issue for the IGE of the expectation, Equation [25] does attain for that IGE (of course, at the level 

of approximation allowed by second-order Taylor-series approximations) the goal that Equation [12] does 

not fully attain for the conventional IGE. 

In the main text I reported the sign of four derivatives, some of which I used above. The 

derivative of 𝛼𝛼�1 with respect to 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) is: 

𝜕𝜕𝛼𝛼�1
𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

= −
1

��𝐶𝐶𝛼𝛼�1�
2 − 2

𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�
1
2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)]2

< 0.                                                                    

It is more convenient to express the other derivatives in terms of the following derivative: 

𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

= �1 −
𝐶𝐶𝛼𝛼�1

��𝐶𝐶𝛼𝛼�1�
2 − 2

𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)�
1/2� < 0, 

for which the sign can be easily established given that 𝐶𝐶𝛼𝛼�1 = 1
𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍, ln𝑋𝑋 )

 can be safely assumed to be 

positive. Now I can write the remaining derivatives as: 

  
𝜕𝜕𝛼𝛼�1

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) 
=

𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

𝜕𝜕𝐶𝐶𝛼𝛼�1
𝜕𝜕 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋) 

=
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1 �

−
𝜃𝜃1

[𝜃𝜃1 𝐶𝐶𝐶𝐶𝐶𝐶(Y , ln𝑋𝑋) + 𝐶𝐶𝐶𝐶𝐶𝐶(W, ln𝑋𝑋 )]2� > 0 

𝜕𝜕𝛼𝛼�1
𝜕𝜕 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) =

𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

𝜕𝜕𝐶𝐶𝛼𝛼�1
𝜕𝜕 𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊, ln𝑋𝑋) 

=
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  �

−
1

[𝜃𝜃1 𝐶𝐶𝐶𝐶𝐶𝐶(Y , ln𝑋𝑋) + 𝐶𝐶𝐶𝐶𝐶𝐶(W, ln𝑋𝑋 )]2� > 0 

  
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝜃𝜃1

=
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

𝜕𝜕𝐶𝐶𝛼𝛼�1
𝜕𝜕 𝜃𝜃1 

=
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  �

−
𝐶𝐶𝐶𝐶𝐶𝐶(Y , ln𝑋𝑋)

[𝜃𝜃1 𝐶𝐶𝐶𝐶𝐶𝐶(Y , ln𝑋𝑋) + 𝐶𝐶𝐶𝐶𝐶𝐶(W, ln𝑋𝑋 )]2� > 0, 
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where in determining the sign of the first and third derivatives I safely assumed that 𝜃𝜃1 > 0 and 

𝐶𝐶𝐶𝐶𝐶𝐶(Y, ln𝑋𝑋) > 0, respectively.  

C. Estimation of the IGE of the expectation with short-run measures of parents’ economic status 

and the PPML estimator 

I derive here Equation [26] and related expressions, and provide additional comments. 

Substituting 𝑆𝑆 for 𝑋𝑋 in Equation [3] yields the PRF ln𝐸𝐸(𝑌𝑌|𝑠𝑠) = 𝛼𝛼�0 + 𝛼𝛼�1 ln 𝑆𝑆, where 𝛼𝛼�1 is the probability 

limit of the PPML estimator of the IGE of the expectation with short-run measures of parental income. 

The approximate closed-form expression for 𝛼𝛼�1 is: 

𝛼𝛼�1 ≅ 𝐶𝐶𝛼𝛼�1 − ��𝐶𝐶𝛼𝛼�1�
2 − 𝑉𝑉𝛼𝛼�1�

1
2 ,                    [26] 

where 𝐶𝐶𝛼𝛼�1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln 𝑆𝑆 )]−1, 𝑉𝑉𝛼𝛼�1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(ln 𝑆𝑆)]−1 and �𝐶𝐶𝛼𝛼�1�
2 > 𝑉𝑉𝛼𝛼�1. Using Equation [19] to 

substitute S out, 𝐶𝐶𝛼𝛼�1 and 𝑉𝑉𝛼𝛼�1 become: 

𝐶𝐶𝛼𝛼�1 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝜋𝜋0 + 𝜋𝜋1 ln𝑋𝑋 + 𝑃𝑃)]−1                                            

= [𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃)]−1                              

𝑉𝑉𝛼𝛼�1 = 2 [𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋0 + 𝜋𝜋1 ln𝑋𝑋 + 𝑃𝑃)]−1                                         

       = 2 {[𝜋𝜋1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) + 2 𝐶𝐶𝐶𝐶𝐶𝐶(ln𝑋𝑋,𝑃𝑃)}−1 

= 2 {[𝜋𝜋1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)}−1                          

= 2 { 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)[(𝜋𝜋1)2 + 𝑉𝑉𝑉𝑉]}−1,                             

where 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)
𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋). These are the expressions for 𝐶𝐶𝛼𝛼�1 and 𝑉𝑉𝛼𝛼�1 reported in the main text as part of 

Equation [26].  

Equation [26] is the IGE-of-the-expectation counterpart to Equations [13] and [14]. Similarly to 

Equation [13] in the case of the conventional IGE, Equation [26] identifies the various right-side factors 

that may jointly affect estimation of the IGE of the expectation when short-run measures of parental 

income are substituted for their long-run counterparts. These factors are (a) 𝜋𝜋1 ≠ 1, (b)  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, exp (𝑃𝑃)) ≠ 0, and (c) 𝑉𝑉𝑉𝑉 > 0 (which is the case by assumption). Values of 𝜋𝜋1 different from one 

reflect how much the differences in short-run parental income across children tend to deviate from the 

corresponding differences in long-run parental income (when parental income is measured at the relevant 

parental age). 

As pointed out in the main text, under the empirical assumption of the GEiV-E model regarding 

right-side measurement error specified by Equation [22], 𝐶𝐶𝛼𝛼�1 reduces to  

𝐶𝐶𝛼𝛼�1 = [𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 )]−1. 
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So Equation [26] indicates, as does Equation [14] in the case of the conventional IGE, that even when 

Equation [22] holds, estimation of the IGE of the expectation with short-run measures of parental income 

is still compatible with both attenuation and amplification bias—as 𝑉𝑉𝑉𝑉 > 0 tends to produce attenuation 

bias, but whether this is the case or not also depends on the value of 𝜋𝜋1. As a sufficient condition for  
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝜋𝜋1

< 0 is that 𝜋𝜋1 is not too small and VR is not larger than one (see below), and we can expect 𝜋𝜋1 to be 

smaller than one when the parents are younger and larger than one when they are older, estimation with 

measures pertaining to when the parents are too young (too old) should contribute to overestimating 

(underestimating) the IGE of the expectation.  

 When 𝜋𝜋1 = 1 the differences are, on average across children, similar for the long-run and the 

short-run measures. In this context the only potential source of bias that remains is 𝑉𝑉𝑉𝑉 > 0, as  𝐶𝐶𝛼𝛼�1 = 𝐶𝐶𝛼𝛼1 

and 𝑉𝑉𝛼𝛼�1 becomes: 

𝑉𝑉𝛼𝛼�1 = 2 { 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)[1 + 𝑉𝑉𝑉𝑉]}−1.  

Therefore 𝛼𝛼�1 < 𝛼𝛼1 and there is attenuation bias, with the magnitude of the bias determined by VR, i.e., by 

the relative sizes of 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) and 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋). Given 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋), this bias and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) fall together (as 
𝜕𝜕𝛼𝛼�1

𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) 
< 0, see next), which provides a formal justification for the strategy of using a multiyear average 

of parental income instead of an annual measure to estimate the IGE of the expectation (an approach 

already employed, without a formal justification, by Mitnik et al., 2015).   

In the text I reported the sign of five derivatives, some of which I used above. The derivatives of 

𝛼𝛼�1 with respect to 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) are: 

𝜕𝜕𝛼𝛼�1
𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) 

= 

−
[𝜋𝜋1]2

[(𝜋𝜋1)2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)]2 �[𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃)]2  − 2
[𝜋𝜋1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)+𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)�

1
2

< 0 

𝜕𝜕𝛼𝛼�1
𝜕𝜕 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃) 

= 

−
1

[(𝜋𝜋1)2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)]2 �[𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃)]2  − 2
[𝜋𝜋1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)+𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)�

1
2

< 0. 

From the last derivative, it immediately follows that 𝜕𝜕𝛼𝛼�1
𝜕𝜕 𝑉𝑉𝑉𝑉 

< 0 as well. 

It is more convenient to express two of the other derivatives in terms of the following derivative: 
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𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

= �1 −
𝐶𝐶𝛼𝛼�1

��𝐶𝐶𝛼𝛼�1�
2 − 2

[𝜋𝜋1]2 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋)+𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃)�
1/2� < 0, 

for which the sign can be easily established given that 𝐶𝐶𝛼𝛼�1 = 1
𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑆𝑆 )

 can be safely assumed to be 

positive. The two derivatives of interest can be written as: 

𝜕𝜕𝛼𝛼�1
 𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) 

=
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

𝜕𝜕𝐶𝐶𝛼𝛼�1
 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) 

                                                                        

        =
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  �

−
𝜋𝜋1

[𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃)]2� > 0. 

𝜕𝜕𝛼𝛼�1
 𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃 ) 

=
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  

𝜕𝜕𝐶𝐶𝛼𝛼�1
 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃 ) 

                                                                         

      =
𝜕𝜕𝛼𝛼�1
𝜕𝜕𝐶𝐶𝛼𝛼�1  �

−
1

[𝜋𝜋1 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌, ln𝑋𝑋 ) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃)]2� > 0. 

 Under the GEiVE model’s empirical assumption specified by Equation [21], i.e., 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌,𝑃𝑃) = 0, 

the derivative of 𝛼𝛼�1 with respect to 𝜋𝜋1 is: 

𝜕𝜕𝛼𝛼�1
𝜕𝜕𝜋𝜋1

= −
1

Cov(Y, ln𝑋𝑋) [𝜋𝜋1]2 
+

2
[Cov(Y,ln𝑋𝑋)]2 [𝜋𝜋1]3 −

4 𝜋𝜋1Var(ln𝑋𝑋)
[Var(P)+[𝜋𝜋1]2Var(ln𝑋𝑋)]2

2 � 1
[Cov(Y,ln𝑋𝑋)]2 [𝜋𝜋1]2 −

2
Var(P)+[𝜋𝜋1]2Var(ln𝑋𝑋)�

1/2. 

This derivative is negative if and only if: 
2

[Cov(Y,ln𝑋𝑋)]2 [𝜋𝜋1]3 −
4 𝜋𝜋1Var(ln𝑋𝑋)

[Var(P)+[𝜋𝜋1]2Var(ln𝑋𝑋)]2

2 � 1
[Cov(Y,ln𝑋𝑋)]2 [𝜋𝜋1]2 −

2
Var(P)+[𝜋𝜋1]2Var(ln𝑋𝑋)�

1/2 <
1

Cov(Y, ln𝑋𝑋) [𝜋𝜋1]2 
 

 
 Cov(Y,ln𝑋𝑋) [𝜋𝜋1]2

[Cov(Y,ln𝑋𝑋)]2 [𝜋𝜋1]3 −
2 [𝜋𝜋1]2Var(ln𝑋𝑋) 𝜋𝜋1Cov(Y,ln𝑋𝑋) 

[Var(P)+[𝜋𝜋1]2Var(ln𝑋𝑋)]2

� 1
[Cov(Y,ln𝑋𝑋)]2 [𝜋𝜋1]2 −

2
Var(P)+[𝜋𝜋1]2Var(ln𝑋𝑋)�

1/2 < 1 

 
 1

[Cov(Y, ln𝑋𝑋)] [𝜋𝜋1] −
2 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
𝜋𝜋1Cov(Y, ln𝑋𝑋) [𝜋𝜋1]2Var(ln𝑋𝑋)  

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)

< �
1

[Cov(Y, ln𝑋𝑋)]2 [𝜋𝜋1]2 −
2

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)�
1/2

 

 

�
 1

[Cov(Y, ln𝑋𝑋)] [𝜋𝜋1]−
2 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
𝜋𝜋1 Cov(Y, ln𝑋𝑋) [𝜋𝜋1]2 Var(ln𝑋𝑋)

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) �
2

<
1

[Cov(Y, ln𝑋𝑋)]2 [𝜋𝜋1]2 −
2

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
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�
2 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
𝜋𝜋1 Cov(Y, ln𝑋𝑋) [𝜋𝜋1]2Var(ln𝑋𝑋)  

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) �
2

− 2 
2 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
[𝜋𝜋1]2 Var(ln𝑋𝑋)

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) < −
2

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
 

 

−  
2 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
2 [𝜋𝜋1]2 Var(ln𝑋𝑋)  

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) < 

−
2

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) �1 −
2 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
�
𝜋𝜋1Cov(Y, ln𝑋𝑋) [𝜋𝜋1]2 Var(ln𝑋𝑋)  

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
�
2

� 

 
2 Var(ln𝑋𝑋)  [𝜋𝜋1]2

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) > 1 −
2 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
�𝜋𝜋1 Cov(Y, ln𝑋𝑋)

[𝜋𝜋1]2 Var(ln𝑋𝑋)
Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)

�
2

 

 

2 Var(ln𝑋𝑋)  [𝜋𝜋1]2 + 2 �𝜋𝜋1 Cov(Y, ln𝑋𝑋)  [𝜋𝜋1]2 Var(ln𝑋𝑋)
Var(P)+[𝜋𝜋1]2Var(ln𝑋𝑋)

�
2

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) > 1 

 

2 [𝜋𝜋1]2 Var(ln𝑋𝑋) + 2 �𝜋𝜋1 Cov(Y, ln𝑋𝑋)
[𝜋𝜋1]2 Var(ln𝑋𝑋)

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)
�
2

> Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋) 

 

  [𝜋𝜋1]2 Var(ln𝑋𝑋)  + 2 [𝜋𝜋1]2 [Cov(Y, ln𝑋𝑋)]2  � 
[𝜋𝜋1]2 Var(ln𝑋𝑋) 

Var(P) + [𝜋𝜋1]2Var(ln𝑋𝑋)�
2

− Var(P) > 0 

 

  [𝜋𝜋1]2 � Var(ln𝑋𝑋) + 2  � 
Cov(Y, ln𝑋𝑋) 

1 + 1
[𝜋𝜋1]2 

Var(P)
 Var(ln𝑋𝑋)

�

2

� − Var(P) > 0. 

 
Therefore, safely assuming that Cov(Y, ln𝑋𝑋) > 0, a sufficient condition for  𝜕𝜕𝛼𝛼�1

𝜕𝜕𝜋𝜋1
< 0 is that 𝜋𝜋1 is not too 

small and Var(P) is not larger than Var(ln𝑋𝑋) (i.e., VR is not larger than one). In the empirical analyses, 

Var(P) > 𝑉𝑉𝑉𝑉𝑉𝑉(ln𝑋𝑋) only when the parental measure is based on one year of income information. 

 This is exactly as in the GEiV model. Under the empirical assumption that 𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄, ln𝑌𝑌) = 0, 

from Equation [14] we have: 

𝜕𝜕𝛽𝛽�1
𝜕𝜕𝜂𝜂1

= −
2 𝛽𝛽1[𝜂𝜂1Var(ln𝑋𝑋)]2

{Var(Q) + [𝜂𝜂1]2 Var(ln𝑋𝑋)}2 +
𝛽𝛽1 Var(ln𝑋𝑋)

Var(Q) + [𝜂𝜂1]2 Var(ln𝑋𝑋)
 

= 𝛽𝛽1
Var(ln𝑋𝑋){𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄) − [𝜂𝜂1]2 Var(ln𝑋𝑋)} 

{Var(Q) +  [𝜂𝜂1]2 Var(ln𝑋𝑋)}2 .                           

The last equation shows that a sufficient condition for 𝜕𝜕𝛽𝛽
�1

𝜕𝜕𝜂𝜂1
< 0 is that 𝜂𝜂1is not too small and Var(Q) is not 

larger than Var(ln𝑋𝑋). 
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D. Additional information on samples and variables 

I provide here additional information on the PSID samples and variables employed in the 

empirical analyses.  

Like Hertz (2007), I define “child” broadly to include anyone of the right age reported in the 

PSID to be either the son, daughter, stepson, stepdaughter, nephew, niece, grandson or granddaughter of 

the household head or his wife (or long-term partner).1 As Hertz (2007:35) put it, “the idea is to look at 

the relation between children’s income and the income of the households in which they were raised, even 

if that household was not, or not always, headed by their mother or father.” Similarly, when the children 

are 1-17 years old, the “father” is the household head (if the head is male), while the “mother” is either 

the household head (if the head is female) or the head’s wife or long-term partner. When the children are 

older than 17, the father and mother are those who were determined to be the father and mother at age 17 

(this is only relevant for the sample used in the right-side analyses).  

The PSID switch to collecting data biannually (from survey year1997 on) generated some 

problems for the analyses conducted in this paper. Because information on children’s income and 

earnings in the years 1997, 1999, 2001, 2003, 2005, 2007, 2009 and 2011 is not available, if the data are 

used as provided the estimates of short-run IGEs (and other parameters and quantities discussed 

throughout the paper) at different children’s ages would be based on information from different birth 

cohorts. For instance, in the left-side analyses, the estimate of the IGE when the children are 34 years old 

would be based on information from all seven cohorts included in the sample (i.e., cohorts 1952 to 1958). 

The estimate of the IGE at age 40 would be based on six cohorts, as measures of income at age 40 are not 

available for the 1957 cohort. And the IGE estimates at age 45 and 46 would be based on three and four 

cohorts, respectively, as measures of income at age 45 are not available for the 1952, 1954, 1956 and 

1958 cohorts, while measures of income at age 46 are not available for the 1953, 1955 and 1957 cohorts. 

So using the data as provided would add a substantial amount of noise to the curves shown in the paper’s 

figures. 

To address this problem, I used the children-years from the two years contiguous to each missing 

year to “represent” the latter, with the sampling weights of those two children-years divided by two and 

the children’s ages adjusted appropriately. As the last year of information available at the time of 

completing my empirical analyses was 2012 while the children born in 1958 became 55 years old in 2013, 

for that cohort I represented the year 2013 with the information from 2012, with the age adjusted from 54 

to 55. In the case of the right-side analyses, the lack of income information in the years listed above also 

affected the computation of parental measures for the cohorts 1972, 1973 and 1974 (the other six cohorts 

                                                           
1 By convention, the PSID never codes a woman as household head and her spouse as “husband.” 
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are not affected). In this case I represented the years 1997 (all three cohorts), 1999 (last two cohorts) and 

2001 (1974 cohort) with the average income of the parents in the two contiguous years. The unweighted 

descriptive statistics presented in Table 1 pertain to the PSID data without the addition of information 

from contiguous years to represent the children-years that are missing. 

Children’s annual earnings are measured, in all years, in the way the PSID measured “income 

from labor” up to 1992. Starting in 1993 the PSID did not include any longer, in its measure of income 

from labor, the labor portion of business income and 50 percent of farm income, which were included in 

previous years. So I used the PSID variable up to 1992, but for later years I computed the pre-1993 notion 

using several variables. The annual measures of family income are based on the PSID notion of “total 

family income.” But as the income components the PSID used to compute total family income are 

effectively affected by top coding in the period 1970-1978 (i.e., top codes were not only in place but were 

“binding” in that period for some people), and the PSID-computed total-family income for those years is 

based on these top-coded values, I proceeded as follows: (a) I addressed the top-coding of all income 

components in 1970-1978 by using Pareto imputation (Fichtenbaum and Shahidi 1988), and (b) I 

recomputed total family income for those years with the Pareto-imputed component variables.  

In the earnings analyses I estimated elasticities with respect to parental income in spite of the fact 

that it is more common to estimate them with respect to fathers’ earnings. However, as Corak (2006:54) 

and Mazumder (2005:250) have also pointed out, there are good reasons why it is preferable to use a 

measure of family income: (a) it incorporates the income of mothers and thus better indexes the full 

complement of resources available to invest in children; (b) it reflects the ability of families to draw on 

other income sources in response to transitory earnings shocks; and (c) it avoids any selection bias that 

may result from omitting sons with absent fathers (as they are likely to be comparatively disadvantaged). 

For research that estimated the elasticity of sons’ earnings with respect to family income, see for instance 

Berman and Taubman (1990), Chadwick and Solon (2002), Levine and Mazumder (2002), Mazumder 

(2005), Mitnik et al. (2015), and Mitnik and Grusky (2017).  

E. IGE estimates underlying figures, and additional empirical results 

 Tables E1 and E2 present estimates of the IGE of children’s family income and sons’ earnings, 

respectively, at ages 26 to 55. The tables report estimates both from models that include and do not 

include a quadratic polynomial on parental age on the RHS. The estimates from the latter models are 

those underlying the short-run IGE curves shown in Figures 1 and 2. As indicated in the main text, IGE 

estimates from models that do control for parental age are very similar to those that do not control for 

parental age.  

 Tables E3 and E4 present estimates of the IGE of children’s family income and sons’ earnings, 

respectively, from models using parental-income measures based on 1 to 25 years of income information 
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and pertaining to when the average age of parents ranged from 29 to 52 years old (i.e., when the children 

were from 1 to 25 years old). The estimates based on five years of information are those underlying the 

short-run IGE curves shown in Figures 3 and 4. As indicated in the main text, the tables show that 

amplification (rather than attenuation) bias is not just a theoretical possibility but actually occurs when the 

parents are young enough and the parental-income measures are based on enough years of information. 

When amplification bias occurs, it is quite small in all cases (at least for the combinations of parental age 

and years of parental information that are available with the sample used here).  

 The analyses in the main text made it clear that it’s important to consider the effect of parental 

years of information on IGE estimates jointly with those of parental age, and the same is likely to be the 

case for children’s age. Figure E1 offers an overview of these joint effects. The top panels show the joint 

effects of children’s age and years of information, for children 24 to 38 years old and 1 to 25 years of 

parental information. As in Figure 4, switching from one to three years of information brings about a 

much larger decrease in bias than subsequent additions of years of information do, at all children’s ages. 

However, if we ignore the one-year estimates, the effects of age and years of information on the IGE of 

family income (left panel) are approximately linear and additive: The R-squared of such a model is 0.98. 

Alternatively, keeping all estimates but adding to the model’s RHS an indicator variable for years of 

information equal to one produces an R-squared of 0.97. The joint effects on the IGE of earnings (right 

panel) are still very roughly additive, but they appear more clearly nonlinear (especially in the case of 

children’s age, although this likely results in part from the much smaller samples used to produce the 

earnings estimates); nevertheless, fitting an additive linear model delivers an R-squared of 0.89 when 

estimates based on one year of information are excluded, and of 0.92 if they are kept and an indicator 

variable is added to the model. Tables E5 and E6 present the IGE estimates underlying the top panels 

(including standard errors), and similar estimates from model that control for parental age. The latter 

estimates are very similar to the former. 

 The bottom panels of Figure E1, which are based on information from Tables E3 and E4, show 

the joint effects of average parental age and years of parental information on IGE estimates, for parental 

ages 31, 35, 40, 45 and 49, and 1, 3, 5, 7 and 9 years of information.  As in previous analyses, switching 

from one to three years of parental information has a much larger effect on estimates than any subsequent 

addition of information. The relationship between years of parental information, parental age and IGE 

estimates is more complex that in the first two panels. The way in which 𝜋𝜋1 and VR change with parental 

age suggests that the relationship between IGE estimates and parental age should be nonlinear and switch 

sign at some point (from positive to negative), which is consistent with what we see in the figure (more 

clearly for the IGE of family income than for the IGE of earnings). Models like those fitted for the top 

panels, but in which parental age enters as a quadratic polynomial, deliver an R-squared of 0.95 (0.94 
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with an indicator variable for one year of information) in the case of the IGE of family income, and an R-

squared of 0.78 (0.90 with an indicator variable) in the case of the IGE of earnings.   
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Table E1:  IGE of children's expected family income, by children's age

26 0.23 
(0.05)

- - - 0.22
(0.05)

- - -

27 0.24
(0.05)

0.25
(0.04)

- - 0.24
(0.05)

0.25
(0.05)

- -

28 0.28
(0.05)

0.26
(0.04)

0.25
(0.04)

- 0.28
(0.05)

0.26
(0.05)

0.25
(0.05)

-

29 0.26
(0.05)

0.27
(0.05)

0.27
(0.05)

0.28
(0.05)

0.25
(0.05)

0.26
(0.05)

0.27
(0.05)

0.27
(0.05)

30 0.27
(0.05)

0.28
(0.05)

0.29
(0.05)

0.29
(0.05)

0.26
(0.05)

0.28
(0.05)

0.28
(0.05)

0.28
(0.05)

31 0.31
(0.06)

0.30
(0.06)

0.30
(0.05)

0.30
(0.05)

0.31
(0.07)

0.30
(0.06)

0.29
(0.06)

0.29
(0.05)

32 0.32
(0.06)

0.32
(0.06)

0.31
(0.06)

0.31
(0.06)

0.31
(0.06)

0.31
(0.06)

0.30
(0.06)

0.30
(0.06)

33 0.33
(0.07)

0.32
(0.06)

0.32
(0.06)

0.32
(0.06)

0.32
(0.07)

0.31
(0.06)

0.31
(0.06)

0.32
(0.06)

34 0.30
(0.06)

0.32
(0.06)

0.34
(0.06)

0.35
(0.06)

0.30
(0.06)

0.32
(0.06)

0.33
(0.06)

0.34
(0.06)

35 0.34
(0.07)

0.34
(0.06)

0.35
(0.07)

0.35
(0.06)

0.34
(0.07)

0.33
(0.07)

0.34
(0.07)

0.34
(0.06)

36 0.37
(0.07)

0.38
(0.07)

0.36
(0.06)

0.37
(0.06)

0.37
(0.07)

0.37
(0.07)

0.35
(0.07)

0.36
(0.07)

37 0.41
(0.08)

0.39
(0.07)

0.39
(0.07)

0.39
(0.06)

0.39
(0.08)

0.37
(0.07)

0.38
(0.07)

0.38
(0.06)

38 0.37
(0.06)

0.41
(0.07)

0.41
(0.07)

0.40
(0.06)

0.36
(0.06)

0.39
(0.07)

0.40
(0.07)

0.39
(0.06)

39 0.44
(0.07)

0.42
(0.07)

0.42
(0.06)

0.41
(0.06)

0.42
(0.07)

0.41
(0.06)

0.41
(0.06)

0.39
(0.06)

40 0.45
(0.07)

0.44
(0.06)

0.41
(0.06)

0.41
(0.06)

0.44
(0.07)

0.42
(0.06)

0.40
(0.06)

0.39
(0.06)

41 0.42
(0.06)

0.41
(0.06)

0.41
(0.06)

0.40
(0.06)

0.42
(0.06)

0.40
(0.06)

0.40
(0.06)

0.39
(0.06)

42 0.37
(0.07)

0.39
(0.07)

0.40
(0.06)

0.41
(0.06)

0.36
(0.07)

0.38
(0.07)

0.39
(0.07)

0.39
(0.06)

43 0.39
(0.08)

0.38
(0.07)

0.39
(0.07)

0.40
(0.06)

0.36
(0.08)

0.36
(0.07)

0.38
(0.07)

0.39
(0.06)

44 0.38
(0.07)

0.39
(0.07)

0.39
(0.07)

0.40
(0.06)

0.36
(0.08)

0.37
(0.07)

0.38
(0.07)

0.38
(0.06)

45 0.4
(0.07)

0.40
(0.07)

0.40
(0.07)

0.40
(0.06)

0.39
(0.07)

0.38
(0.07)

0.38
(0.07)

0.39
(0.07)

46 0.42
(0.07)

0.42
(0.07)

0.41
(0.07)

0.41
(0.07)

0.40
(0.07)

0.39
(0.07)

0.40
(0.07)

0.39
(0.07)

47 0.42
(0.07)

0.43
(0.7)

0.43
(0.07)

0.42
(0.07)

0.40
(0.07)

0.41
(0.07)

0.41
(0.07)

0.40
(0.07)

48 0.44
(0.08)

0.43
(0.07)

0.43
(0.07)

0.43
(0.07)

0.42
(0.08)

0.41
(0.07)

0.41
(0.07)

0.40
(0.07)

49 0.44
(0.07)

0.44
(0.07)

0.43
(0.07)

0.43
(0.07)

0.42
(0.07)

0.42
(0.07)

0.41
(0.7)

0.41
(0.07)

50 0.43
(0.07)

0.43
(0.07)

0.43
(0.08)

0.43
(0.07)

0.40
(0.07)

0.41
(0.07)

0.41
(0.7)

0.41
(0.07)

51 0.42
(0.08)

0.42
(0.08)

0.43
(0.08)

0.43
(0.08)

0.40
(0.08)

0.40
(0.08)

0.41
(0.8)

0.41
(0.07)

52 0.43
(0.09)

0.43
(0.08)

0.43
(0.08)

0.43
(0.08)

0.41
(0.09)

0.41
(0.08)

0.41
(0.8)

0.41
(0.08)

53 0.44
(0.08)

0.44
(0.08)

0.43
(0.08)

- 0.42
(0.08)

0.42
(0.08)

0.41
(0.8)

-

54 0.44
(0.08)

0.44
(0.08)

- - 0.42
(0.08)

0.42
(0.08)

- -

55 0.44
(0.07)

- - - 0.42
(0.07)

- - -

The table presents age-specific estimates of the IGE of children's expected family income when they were between 26 and 55 years old. Point estima-
tes are in bold, standard errors are in parentheses. Parental income is parents' average income when their children were 15-17 years old. The four col-
umns in each panel differ on whether exact ages or three different age intervals are used to select the observations in each estimation sample (the va-
lues in the first column are the exact ages or the mid-points of the age intervals). A quadratic polynomial on the average age of parents when their
children were 15-17 years old is used to control for parental age in models that do so.

Seven-year 
interval

Children's 
age

Without controlling for parental age Controlling for parental age

Exact age Three-year 
interval

Five-year 
interval

Seven-year 
interval

Exact age Three-year 
interval

Five-year 
interval
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Table E2:  IGE of sons' expected earnings, by sons' age

26 0.16 - - - 0.15 - - -
(0.05) (0.06)

27 0.15 0.16 - - 0.16 0.16 - -
(0.06) (0.05) (0.06) (0.05)

28 0.16 0.16 0.16 - 0.17 0.16 0.16 -
(0.05) (0.05) (0.05) (0.06) (0.06) (0.06)

29 0.16 0.17 0.19 0.20 0.15 0.17 0.19 0.20
(0.06) (0.06) (0.06) (0.05) (0.07) (0.06) (0.06) (0.06)

30 0.19 0.21 0.22 0.23 0.18 0.20 0.22 0.22
(0.07) (0.07) (0.06) (0.06) (0.08) (0.07) (0.07) (0.06)

31 0.27 0.25 0.25 0.24 0.27 0.25 0.24 0.24
(0.08) (0.07) (0.07) (0.06) (0.09) (0.08) (0.07) (0.07)

32 0.30 0.29 0.27 0.26 0.30 0.29 0.27 0.26
(0.07) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.07)

33 0.31 0.29 0.29 0.29 0.30 0.29 0.30 0.30
(0.09) (0.08) (0.07) (0.07) (0.09) (0.08) (0.08) (0.07)

34 0.25 0.30 0.31 0.32 0.27 0.31 0.32 0.33
(0.08) (0.08) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08)

35 0.34 0.32 0.33 0.33 0.35 0.33 0.34 0.34
(0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

36 0.36 0.36 0.34 0.35 0.37 0.37 0.36 0.36
(0.08) (0.07) (0.08) (0.08) (0.09) (0.08) (0.08) (0.09)

37 0.39 0.37 0.38 0.38 0.39 0.38 0.39 0.39
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

38 0.37 0.40 0.40 0.40 0.38 0.41 0.41 0.41
(0.11) (0.10) (0.10) (0.09) (0.11) (0.10) (0.10) (0.09)

39 0.44 0.42 0.42 0.41 0.44 0.43 0.43 0.42
(0.12) (0.11) (0.10) (0.10) (0.12) (0.11) (0.10) (0.10)

40 0.45 0.45 0.42 0.41 0.46 0.46 0.43 0.42
(0.11) (0.11) (0.11) (0.10) (0.11) (0.11) (0.11) (0.10)

41 0.45 0.43 0.43 0.41 0.46 0.44 0.43 0.42
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

42 0.39 0.41 0.41 0.42 0.39 0.42 0.42 0.42
(0.11) (0.10) (0.10) (0.10) (0.11) (0.10) (0.10) (0.10)

43 0.40 0.39 0.41 0.43 0.41 0.40 0.41 0.43
(0.09) (0.10) (0.10) (0.09) (0.10) (0.10) (0.10) (0.09)

44 0.39 0.40 0.42 0.43 0.39 0.41 0.42 0.43
(0.10) (0.09) (0.09) (0.09) (0.10) (0.10) (0.09) (0.09)

45 0.43 0.43 0.43 0.43 0.42 0.43 0.43 0.43
(0.09) (0.09) (0.09) (0.09) (0.10) (0.09) (0.09) (0.09)

46 0.47 0.45 0.44 0.43 0.46 0.45 0.44 0.43
(0.09) (0.09) (0.09) (0.08) (0.09) (0.09) (0.09) (0.08)

47 0.46 0.46 0.45 0.43 0.45 0.46 0.44 0.43
(0.09) (0.09) (0.08) (0.08) (0.09) (0.09) (0.08) (0.08)

48 0.46 0.45 0.44 0.42 0.45 0.44 0.43 0.42
(0.10) (0.09) (0.08) (0.08) (0.10) (0.09) (0.08) (0.08)

49 0.43 0.42 0.41 0.41 0.43 0.42 0.41 0.41
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

50 0.37 0.38 0.39 0.40 0.37 0.38 0.39 0.40
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

51 0.30 0.36 0.38 0.39 0.34 0.35 0.37 0.39
(0.09) (0.09) (0.08) (0.08) (0.09) (0.09) (0.09) (0.08)

52 0.36 0.36 0.37 0.39 0.35 0.35 0.37 0.38
(0.11) (0.10) (0.09) (0.08) (0.11) (0.10) (0.09) (0.08)

53 0.37 0.38 0.38 - 0.37 0.38 0.37 -
(0.10) (0.09) (0.09) (0.10) (0.10) (0.09)

54 0.40 0.40 - - 0.41 0.40 - -
(0.08) (0.09) (0.09) (0.09)

55 0.43 - - - 0.42 - - -
(0.09) (0.09)

The table presents age-specific estimates of the IGE of sons' expected earnings when they were between 26 and 55 years old. Point estimates are in
bold, standard errors are in parentheses. Parental income is parents' average income when their children were 15-17 years old. The four columns in
each panel differ on wether exact ages or three different age intervals are used to select the observations in each estimation sample (the values in
the first column are either the exact ages or the mid-points of the age intervals). A quadratic polynomial on the average age of parents when their 
children were 15-17 years old is used to control for parental age in models that do so.

Seven-year 
interval

Sons' age
Without controlling for parental age Controlling for parental age

Exact age Three-year 
interval

Five-year 
interval

Seven-year 
interval

Exact age Three-year 
interval

Five-year 
interval
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Figure E3:  IGE of children's expected family income, by number of years of parental information and parental age at time of measurement

1 28.7 0.25 - - - - - - - - - - - -
(0.10)

2 29.7 0.43 0.48 - - - - - - - - - - -
(0.09) (0.10)

3 30.6 0.34 0.52 0.55 - - - - - - - - - -
(0.10) (0.09) (0.10)

4 31.6 0.37 0.54 0.58 0.60 - - - - - - - - -
(0.12) (0.09) (0.10) (0.10)

5 32.5 0.46 0.57 0.59 0.61 0.62 - - - - - - - -
(0.10) (0.09) (0.10) (0.10) (0.10) `

6 33.5 0.45 0.58 0.60 0.61 0.62 0.63 - - - - - - -
(0.11) (0.09) (0.09) (0.09) (0.09) (0.09)

7 34.5 0.41 0.57 0.60 0.61 0.61 0.63 0.63 - - - - - -
(0.11) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

8 35.5 0.47 0.55 0.58 0.60 0.61 0.61 0.62 0.63 - - - - -
(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

9 36.5 0.38 0.54 0.57 0.59 0.60 0.61 0.62 0.62 0.62 - - - -
(0.10) (0.08) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09) (0.09)

10 37.5 0.40 0.50 0.56 0.57 0.59 0.60 0.60 0.61 0.62 0.62 - - -
(0.08) (0.09) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09)

11 38.5 0.33 0.48 0.54 0.56 0.58 0.58 0.60 0.60 0.61 0.61 0.61 - -
(0.10) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

12 39.4 0.44 0.50 0.52 0.55 0.56 0.58 0.59 0.60 0.60 0.60 0.61 0.61 -
(0.07) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

13 40.4 0.31 0.48 0.52 0.53 0.55 0.57 0.58 0.58 0.59 0.59 0.60 0.60 0.61
(0.08) (0.06) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

14 41.4 0.38 0.45 0.50 0.53 0.55 0.56 0.57 0.57 0.58 0.59 0.59 0.60 -
(0.07) (0.08) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

15 42.4 0.31 0.44 0.51 0.53 0.54 0.54 0.55 0.56 0.57 0.58 0.58 - -
(0.11) (0.08) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.08) (0.08)

16 43.4 0.31 0.49 0.51 0.52 0.53 0.53 0.54 0.55 0.56 0.57 - - -
(0.08) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

17 44.3 0.37 0.44 0.51 0.51 0.51 0.53 0.53 0.54 0.55 - - - -
(0.09) (0.08) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

18 45.3 0.28 0.48 0.48 0.50 0.51 0.52 0.52 0.53 - - - - -
(0.10) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

19 46.3 0.36 0.45 0.48 0.48 0.50 0.51 0.52 - - - - - -
(0.08) (0.06) (0.06) (0.07) (0.07) (0.07) (0.07)

20 47.3 0.20 0.40 0.46 0.48 0.49 0.50 - - - - - - -
(0.09) (0.07) (0.06) (0.06) (0.06) (0.07)

21 48.3 0.34 0.41 0.45 0.46 0.49 - - - - - - - -
(0.07) (0.06) (0.06) (0.06) (0.06)

22 49.3 0.27 0.43 0.43 0.46 - - - - - - - - -
(0.09) (0.06) (0.06) (0.06)

23 50.3 0.09 0.41 0.45 - - - - - - - - - -
(0.12) (0.06) (0.06)

24 51.3 0.36 0.40 - - - - - - - - - - -
(0.05) (0.06)

25 52.3 0.27 - - - - - - - - - - - -
(0.09)

The table presents estimates of the IGE of children's expected family income based on parental income measures that differ on the number of years of parental information used to compute
them, and on the parents' average age in those years.  Point estimates are in bold, standard errors are in parentheses. Parental income is measured around the children's age indicated in the first
column, when the parents' average age is as indicated in the second column. The other columns show IGE estimates based on 1, 3, …, 23, 25 years of parental information. Children's family
income is measured at ages 36-38.

25

Children's age around 
which parental 

measure is centered

Parents' 
average age

Number of years of parental information

1 3 5 7 9 11 13 15 17 19 21 23

17



Figure E4:  IGE of sons' expected earnings, by number of years of parental information and parental age at time of measurement

1 28.6 0.23 - - - - - - - - - - - -
(0.11)

2 29.5 0.45 0.54 - - - - - - - - - - -
(0.10) (0.10)

3 30.5 0.29 0.59 0.63 - - - - - - - - - -
(0.15) (0.09) (0.09)

4 31.4 0.35 0.63 0.64 0.65 - - - - - - - - -
(0.15) (0.08) (0.09) (0.09)

5 32.4 0.49 0.61 0.64 0.67 0.67 - - - - - - - -
(0.14) (0.08) (0.09) (0.09) (0.09)

6 33.4 0.47 0.61 0.64 0.65 0.66 0.68 - - - - - - -
(0.11) (0.08) (0.09) (0.09) (0.09) (0.09)

7 34.4 0.45 0.58 0.62 0.63 0.66 0.68 0.70 - - - - - -
(0.10) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

8 35.4 0.45 0.55 0.59 0.64 0.65 0.68 0.70 0.71 - - - - -
(0.10) (0.08) (0.09) (0.08) (0.08) (0.09) (0.09) (0.09)

9 36.4 0.40 0.55 0.59 0.62 0.66 0.67 0.69 0.71 0.73 - - - -
(0.09) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.09) (0.08)

10 37.4 0.39 0.53 0.59 0.62 0.64 0.67 0.69 0.72 0.74 0.75 - - -
(0.09) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.09)

11 38.4 0.25 0.53 0.59 0.61 0.64 0.66 0.70 0.72 0.74 0.73 0.72 - -
(0.15) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09)

12 39.4 0.52 0.58 0.59 0.61 0.64 0.68 0.70 0.72 0.71 0.70 0.70 0.71 -
(0.07) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09)

13 40.3 0.30 0.58 0.60 0.62 0.66 0.68 0.70 0.69 0.69 0.69 0.70 0.71 0.72
(0.12) (0.07) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09)

14 41.3 0.38 0.47 0.61 0.66 0.67 0.69 0.68 0.67 0.67 0.68 0.69 0.71 -
(0.12) (0.13) (0.07) (0.07) (0.07) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09)

15 42.3 0.29 0.49 0.64 0.67 0.68 0.66 0.65 0.65 0.67 0.68 0.69 - -
(0.14) (0.13) (0.07) (0.07) (0.07) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09)

16 43.3 0.26 0.61 0.65 0.67 0.65 0.64 0.64 0.65 0.66 0.67 - - -
(0.12) (0.06) (0.07) (0.07) (0.08) (0.08) (0.09) (0.08) (0.08) (0.08)

17 44.2 0.34 0.47 0.65 0.63 0.62 0.63 0.64 0.65 0.66 - - - -
(0.12) (0.14) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

18 45.2 0.40 0.61 0.59 0.59 0.60 0.62 0.63 0.64 - - - - -
(0.13) (0.07) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

19 46.2 0.43 0.54 0.55 0.57 0.60 0.61 0.63 - - - - - -
(0.12) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

20 47.2 0.26 0.45 0.53 0.56 0.58 0.60 - - - - - - -
(0.11) (0.08) (0.08) (0.08) (0.08) (0.07)

21 48.2 0.37 0.43 0.51 0.55 0.57 - - - - - - - -
(0.06) (0.07) (0.07) (0.07) (0.07)

22 49.2 0.29 0.47 0.48 0.52 - - - - - - - - -
(0.09) (0.06) (0.07) (0.07)

23 50.2 0.43 0.47 0.49 - - - - - - - - - -
(0.06) (0.06) (0.06)

24 51.2 0.43 0.48 - - - - - - - - - - -
(0.07) (0.06)

25 52.2 0.39 - - - - - - - - - - - -
(0.06)

The table presents estimates of the IGE of sons' expected earnings based on parental income measures that differ on the number of years of parental information used to compute them, and
on the parents' average age in those years. Point estimates are in bold, standard errors are in parentheses. Parental income is measured around the children's age indicated in the first column,
when the parents' average age is as indicated in the second column. The other columns show IGE estimates based on 1, 3, …, 23, 25 years of parental information. Children's earnings is measu-
red at ages 36-38. 
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Table E5: IGE of children's expected family income, by children's age and number of years of parental information

24-26 27-29 30-32 33-35 36-38 24-26 27-29 30-32 33-35 36-38
1 0.18 0.22 0.27 0.29 0.31 0.17 0.20 0.24 0.27 0.29

(0.04) (0.05) (0.05) (0.07) (0.08) (0.04) (0.05) (0.05) (0.07) (0.08)
3 0.29 0.35 0.41 0.45 0.48 0.29 0.33 0.40 0.43 0.48

(0.03) (0.04) (0.04) (0.05) (0.06) (0.03) (0.05) (0.04) (0.05) (0.07)
5 0.30 0.36 0.44 0.47 0.52 0.29 0.35 0.42 0.46 0.52

(0.03) (0.04) (0.04) (0.05) (0.07) (0.03) (0.05) (0.04) (0.06) (0.07)
7 0.30 0.37 0.44 0.48 0.53 0.30 0.35 0.43 0.46 0.53

(0.03) (0.04) (0.04) (0.06) (0.07) (0.03) (0.05) (0.05) (0.06) (0.07)
9 0.32 0.39 0.46 0.50 0.55 0.31 0.37 0.45 0.49 0.56

(0.03) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
11 0.33 0.40 0.47 0.52 0.57 0.32 0.39 0.46 0.51 0.57

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
13 0.34 0.41 0.48 0.53 0.58 0.33 0.40 0.47 0.52 0.59

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
15 0.34 0.42 0.49 0.54 0.58 0.34 0.41 0.48 0.53 0.59

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
17 0.35 0.43 0.49 0.55 0.59 0.34 0.41 0.48 0.54 0.60

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
19 0.35 0.43 0.50 0.56 0.59 0.35 0.42 0.49 0.55 0.60

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
21 0.36 0.44 0.51 0.56 0.60 0.35 0.43 0.50 0.56 0.61

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
23 0.36 0.45 0.51 0.57 0.60 0.36 0.43 0.50 0.56 0.61

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)
25 0.37 0.45 0.52 0.58 0.61 0.36 0.44 0.51 0.57 0.62

(0.04) (0.04) (0.05) (0.06) (0.08) (0.04) (0.05) (0.05) (0.06) (0.08)

The table presents estimates of the IGE of children's expected family income by children's age and number of years of parental information. Point estimates are in bold,
standard errors are in parentheses. Parental income is parents' average income over the number of years indicated in the first column, with the period centered at the
year the children were 13 years old (when parents' average age is about 40). Children's income is their family income at the ages indicated at the top of each column. A
quadratic polynomial on the average age of parents when their income is measured is used to control for parental age in models that do so.

Number of years of 
parental information

Without controlling for parental age Controlling for parental age

Children's age Children's age
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Table E6: IGE of sons' expected earnings, by sons' age and number of years of parental information

24-26 27-29 30-32 33-35 36-38 24-26 27-29 30-32 33-35 36-38
1 0.14 0.17 0.26 0.24 0.30 0.12 0.12 0.22 0.20 0.26

(0.05) (0.07) (0.10) (0.11) (0.12) (0.04) (0.06) (0.09) (0.09) (0.11)
3 0.31 0.34 0.52 0.53 0.58 0.28 0.27 0.48 0.50 0.55

(0.05) (0.11) (0.07) (0.07) (0.07) (0.05) (0.12) (0.07) (0.07) (0.07)
5 0.31 0.36 0.55 0.56 0.60 0.29 0.29 0.52 0.53 0.58

(0.05) (0.11) (0.07) (0.07) (0.07) (0.05) (0.13) (0.07) (0.08) (0.07)
7 0.33 0.37 0.57 0.58 0.62 0.31 0.31 0.53 0.55 0.60

(0.05) (0.11) (0.07) (0.08) (0.07) (0.05) (0.13) (0.07) (0.08) (0.08)
9 0.35 0.40 0.60 0.61 0.66 0.33 0.34 0.56 0.58 0.63

(0.05) (0.10) (0.07) (0.08) (0.07) (0.05) (0.12) (0.08) (0.08) (0.08)
11 0.37 0.43 0.63 0.64 0.68 0.35 0.37 0.59 0.62 0.66

(0.05) (0.10) (0.08) (0.08) (0.08) (0.05) (0.11) (0.08) (0.08) (0.08)
13 0.38 0.45 0.64 0.66 0.70 0.36 0.39 0.61 0.64 0.68

(0.06) (0.10) (0.08) (0.08) (0.08) (0.05) (0.11) (0.08) (0.08) (0.08)
15 0.38 0.46 0.64 0.65 0.69 0.36 0.39 0.60 0.63 0.67

(0.06) (0.09) (0.09) (0.09) (0.08) (0.06) (0.10) (0.09) (0.09) (0.09)
17 0.38 0.47 0.64 0.66 0.69 0.37 0.40 0.61 0.64 0.67

(0.06) (0.09) (0.09) (0.09) (0.09) (0.06) (0.10) (0.09) (0.09) (0.09)
19 0.39 0.47 0.64 0.66 0.69 0.37 0.41 0.61 0.64 0.67

(0.06) (0.09) (0.10) (0.10) (0.09) (0.06) (0.10) (0.10) (0.10) (0.09)
21 0.40 0.49 0.65 0.67 0.70 0.39 0.43 0.62 0.65 0.69

(0.07) (0.09) (0.09) (0.09) (0.09) (0.06) (0.10) (0.10) (0.10) (0.09)
23 0.41 0.50 0.66 0.68 0.71 0.39 0.44 0.63 0.66 0.70

(0.07) (0.08) (0.09) (0.09) (0.09) (0.07) (0.09) (0.10) (0.10) (0.09)
25 0.42 0.51 0.67 0.69 0.72 0.40 0.45 0.64 0.67 0.71

(0.06) (0.08) (0.09) (0.09) (0.09) (0.07) (0.09) (0.09) (0.10) (0.09)

The table presents estimates of the IGE of sons' expected earnings by sons' age and number of years of parental information. Point estimates are in bold, standard errors
are in parentheses. Parental income is parents' average income over the number of years indicated in the first column, with the period centered at the year the sons were
13 years old (when parents' average age is about 40). Sons' earnings is their earnings at the ages indicated at the top of each column. A quadratic polynomial on the ave-
rage age of parents when their income is measured is used to control for parental age in models that do so.

Number of years of 
parental information

Without controlling for parental age Controlling for parental age

Sons' age Sons' age
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