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Abstract 

Periodic changes in occupational classifications make it difficult to obtain consistent 

measures of social class over time, potentially jeopardizing research on class-based 

trends. The severity of this problem depends, in part, on the measurement strategies used 

to address those changes. The authors propose that when a sample has been coded partly 

with one occupational classification and partly with another, Krippendorff’s index α be 

used to identify the best strategy for measuring class consistently across the two 

classifications and to assess the reliability of the class measure employed in the final 

analyses. This index can be computed regardless of the metric of the class variable; it can 

be used to compare measures based on different class schemes or that use different 

metrics; and statistical inference is straightforward, even with a complex sampling 

design. The authors put the index to work in conducting a case study of the effects of the 

switch from the 1970 to the 1980 U.S. Census Bureau Classification of Occupations on 

the reliability of Erikson–Goldthorpe–Portocarero class measures. Their findings indicate 

that measurement strategies that seem a priori equally reasonable vary substantially in 

terms of their reliability, and that the bulk of this variation is accounted for by the extent 

to which the strategies rely on subjective judgments about the relationships between 

occupational and class classifications. Most importantly, as long as the best-performing 

measurement strategies are used, the switch in occupational classifications appears to be 

substantially less consequential than has been previously argued. A computer program 

made available as a companion to the paper makes estimation of Krippendorff’s α, and 

statistical inference, very simple endeavors for nominal class variables. 
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Introduction 

The study of long-term trends related to social classes—trends regarding a 

country’s class structure, differences in political attitudes across classes, and 

intergenerational social mobility, to mention three prominent examples—requires that 

social class be measured consistently over time.1 But consistent measures of social class 

can be hard to obtain. Class measures are typically derived from occupation variables 

(and sometimes other variables as well, such as self-employment status), and the 

classifications used to code occupations change periodically as they are improved 

conceptually and updated to account for changes in the occupational structure. When a 

dataset is coded partly with one occupational classification and partly with another, it can 

greatly affect social scientists’ ability to study class trends. The severity of the problem 

depends, in part, on the nature and scope of the changes in the occupational 

classifications, but to a very large degree it also depends on the strategies used to deal 

with these changes.  

There are usually multiple measurement strategies that can be used to “bridge” 

two occupational classifications, and a priori they often seem equally sensible. How do 

we know whether any given strategy produces a measure of social class reliable enough 

to study trends? How should we select among the available strategies? For nominal class 

measures, how can we determine the number of classes (or “granularity”) to use in our 

analyses, given the potential trade-off between granularity and reliability? Similarly, if a 

class scheme favored on theoretical grounds is suspected to be less reliable than others 
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that are also acceptable, how can we establish the reliability cost of using the 

theoretically-preferred scheme? 

Perhaps surprisingly, methodological tools for addressing these issues are not 

available, as social scientists have not developed any systematic approach for assessing 

the reliability performance of different measurement strategies when studying class-based 

trends across a change in occupational classifications. The main goal of this paper is to 

advance such an approach. We propose that a reliability index extensively used in the 

field of content analysis, Krippendorff’s 𝛼𝛼 (alpha) (e.g., Krippendorff 2013:Ch. 12), be 

used to assess the performance of different measurement strategies. Among the key 

properties of this index are that it accommodates any metric (including nominal, ordinal, 

interval, and ratio) and that, unlike many other reliability indices, it models “chance 

agreement” in a way that is both theoretically well-founded and pragmatically fruitful. As 

long as the researcher has access to a subsample that has been coded using both the new 

occupational classification and its predecessor—and such double-coded data are often 

available—it is possible to estimate the index and use it to subject different measurement 

strategies to systematic empirical evaluation. 

 We also conduct a case study in which we use the index to examine the effects of 

the switch from the 1970 to the 1980 Census Bureau Classification of Occupations in the 

United States. Unlike other changes in occupational classifications in the country, that 

switch involved a deep conceptual and empirical discontinuity (Vines and Priebe 1989). 

Researchers have interpreted this discontinuity as making very difficult, if not simply 

precluding, consistent measurement of social class across the 1970-1980 divide, and this 
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has greatly hindered the study of class-related trends. In the case of intergenerational 

mobility, for instance, Beller maintained that “[t]rends in social class fluidity after the 

mid-1980s are unclear, in part because changes to the census coding of occupations in the 

1980s made it impossible to directly compare new survey data with older data” (Beller 

2009:509; references omitted). It has been further argued that the problem is particularly 

serious when working with the widely-used Erikson–Goldthorpe–Portocarero (EGP) 

class scheme (e.g., Erikson and Goldthorpe 1992). For instance, in a study of social class 

differences in the earnings of black and white men, Morgan and McKerrow asserted that 

it is not possible to reconcile the 1970 and 1980 classifications without introducing 

substantial distortions into the data, especially when implementing the EGP class scheme 

(Morgan and McKerrow 2004, Supp. App.: 1), and for this reason they focused on the 

period starting in 1983.2 The reported difficulties have not completely precluded the 

study of U.S. class-based trends across the 1970-1980 divide using the EGP scheme (see 

Hout 2005; Mitnik, Cumberworth and Grusky 2016; Pfeffer and Hertel 2015; Weeden et 

al. 2007). However, none of these studies provided any systematic assessment of the 

reliability of the class measures they used, either in absolute terms or compared to other 

possible measures.3 

In our case study, we examine whether the obstacles to obtaining a reliable EGP 

measure of social class across the 1970-1980 classification divide are as fundamental as 

has been claimed. Using double-coded data from the General Social Survey (GSS; see 

Smith et al. 2011), we assess how seven different measurement strategies fare in terms of 

reliability and in terms of how they perform when used to estimate a common model of 
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intergenerational class mobility. Our results indicate that (a) the strategies, which seem 

equally reasonable a priori, vary substantially in terms of their reliability, (b) this 

variation in reliability is largely accounted for by the extent to which the strategies rely 

on researchers’ subjective judgments about the relationships between occupational and 

class classifications, and (c) as long as the best-performing strategies are used, the 

problems generated by the 1970-1980 classification divide appear to be substantially less 

consequential than has been argued in the literature.  

The paper is organized as follows. In the next section, we introduce 

Krippendorff’s α and explain its conceptual advantages over several other widely-used 

reliability indices. The form of the index we present in this section is very general and 

makes its conceptual foundations transparent, but is not convenient for computational 

purposes. In the following section we therefore introduce a second expression—for 

nominal class variables only—that makes it much easier to compute point estimates and 

conduct statistical inference. The fourth section of the paper is devoted to our case study. 

The last section presents our main conclusions. 

Reliability and social-class measurement strategies 

In the context of measurement theory, reliability is the extent to which a 

measurement procedure provides the same results under repeated measurement of the 

same units; a procedure is considered reliable as long as it tends to produce consistent 

results across measurements. In turn, data are reliable as long as they have been produced 

using a reliable procedure. Reliability is distinguished from validity, which pertains to the 



5 
 

extent to which a measuring procedure measures what it purports to measure. Reliability 

is usually interpreted as a precondition for validity (e.g., Carmines and Zeller 1979).  

When measuring social class across a change in occupational classifications, a 

researcher aims to use a reliable measurement procedure—that is, a procedure that 

assigns people the same class values regardless of which occupational classification was 

used to code their occupations. For each of the two occupational classifications, the 

researcher uses a set of rules to assign class values to occupations.4 We refer to these sets 

of rules as “occupation-to-class mappings” or just “mappings”. Together, the two 

mappings constitute a measurement strategy.5 We can therefore say that the researcher’s 

goal is to use a reliable measurement strategy. 

If part of the sample (i.e., a subsample) has been doubled-coded using the two 

occupational classifications, the extent to which any strategy approaches the ideal of full 

reliability can be empirically assessed. To conduct such as assessment, the researcher 

would assign everyone in the double-coded sample two class values, using the two 

mappings in the measurement strategy.  Loosely speaking, the greater the agreement 

between the class assignments across mappings, the more reliable the measurement 

strategy is. 

In order to make this loose idea operational, the researcher needs a reliability 

index to quantify the degree of agreement, to determine if a particular strategy reaches 

the minimum level of reliability deemed acceptable, and to compare the reliability of 

different strategies. Below we critically examine a set of indices that have been used 
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extensively in various fields to assess reliability. Then we introduce Krippendorff’s α, 

which is the index that we favor. 

Critical assessment of widely-used reliability indices 

An index that has often been used to assess the reliability of interval variables is 

the correlation coefficient. This is a very flawed approach, as it confuses predictability 

with reliability. In our context, the correlation coefficient would provide information 

about how well the class values produced by one occupation-to-class mapping linearly 

predict the values produced by the other. But one mapping’s values can perfectly predict 

the other’s even in cases where the two sets of values are completely different.  

For nominal variables, the reliability index that perhaps seems most intuitive is 

the simple percent agreement—in our case, the percent agreement between two 

occupation-to-class mappings. For example, a measurement strategy where 80 percent of 

people are mapped into the same classes by both mappings seems clearly more reliable 

than a strategy where only 50 percent are mapped into the same classes. But intuitive as it 

may seem, percent agreement is a very unsound measure of reliability as well. It ignores 

that some level of agreement would occur even if class categories were assigned 

randomly.6 Therefore it badly overstates the reliability of the data. Equally concerning, 

given that the agreement expected by chance, or “chance agreement,” is a function of the 

number of class categories, using the percent agreement as reliability index makes 

meaningless any comparisons between class measures with different numbers of 

categories. 
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 Several measures of reliability for nominal variables have been proposed that do 

take into account that agreement may occur by chance, and therefore include a correction 

for chance agreement. They all have the following form (Zwick 1988):  

𝑅𝑅 =
𝐴𝐴𝑜𝑜 − 𝐴𝐴𝑐𝑐
1 − 𝐴𝐴𝑐𝑐

,                         [1] 

where R is a reliability measure, 𝐴𝐴𝑐𝑐 is the chance proportion of agreements as this is 

defined under R, and 𝐴𝐴𝑜𝑜 denotes the observed proportion of agreements (i.e., the 

proportion of observations in which the mappings agree in their social class assignments).  

Figure 1 shows the basic structure of a cross-tabulation of data used to assess the 

reliability of a measurement strategy for a nominal class variable. The figure shows the 

same K class categories in rows and columns. The class measure produced by mapping 

the first occupational classification into the class categories (mapping 1) is in rows, and 

the measure produced by mapping the second occupational classification into the class 

categories (mapping 2) is in columns. In the figure, 𝑝𝑝𝑖𝑖𝑖𝑖 denotes the proportion of people 

assigned to class i by mapping 1 and to class j by mapping 2, while 𝑝𝑝𝑖𝑖.is the proportion of 

people assigned to class i by mapping 1 and 𝑝𝑝.𝑗𝑗 is the proportion of people assigned to 

class j by mapping 2. In all reliability measures for nominal variables, 𝐴𝐴0 = ∑ 𝑝𝑝𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 , 

that is, the observed agreement is simply the sum of the quantities in the main diagonal. 

The reliability measures differ, however, in how they define 𝐴𝐴𝑐𝑐. 

Bennett, Alpert and Goldstein (1954) first proposed the reliability index S, which 

has since been reintroduced under many other names (see Zwick 1988). Under this index, 

chance is modeled as the random assignment of classes to people, assuming a uniform 
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probability over class categories. The probability of any ordered pair of values is then 1
𝐾𝐾2

, 

so the expected proportion of agreements is 𝐴𝐴𝑐𝑐 = 𝐾𝐾 1
𝐾𝐾2

= 1
𝐾𝐾

. The index equals one when 

there is perfect agreement and zero when agreement is as expected by chance. Its main 

shortcomings are that (a) the value of S can be large even if the two mappings produce 

very different marginal distributions of the class variable, when this should result in low 

reliability values; (b) if the mappings assign classes randomly, the values of S will be 

larger the more disagreement there is about marginal distributions (for these two issues, 

see Hsu and Field 2003); and (c) for a given value of 𝐴𝐴𝑜𝑜 , the value of S increases as K 

(the number of classes) increases, even if no one is assigned the added classes (Scott 

1955). 

 Cohen’s (1960) 𝜅𝜅 (kappa) stipulates 𝐴𝐴𝑐𝑐 = ∑ 𝑝𝑝𝑘𝑘.𝑝𝑝.𝑘𝑘
𝐾𝐾
𝑘𝑘=1 . Thus, chance agreement 

here is the agreement that can be expected if classes are randomly and independently 

assigned to people within each mapping, with probabilities equal to the mapping-specific 

observed relative frequencies of the class categories. Although used widely in 

epidemiology and other fields, Cohen’s 𝜅𝜅 is also seriously flawed. The main problem is 

that, for any given level of agreement (any value of 𝐴𝐴𝑜𝑜) 𝜅𝜅 penalizes agreements in 

marginal distributions across mappings, that is, 𝜅𝜅 is lower the more agreement there is 

between those distributions. The reason for this undesirable result is that the index takes 

the marginal distributions as priors; thus, two mappings that produce similar marginal 

distributions must achieve a much higher agreement rate to obtain a given value of 𝜅𝜅 than 

mappings that produce radically different marginal distributions (Brennan and Prediger 

1981:692; see also Warrens 2012 and the references therein). Or, as Krippendoff  (2004: 
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420-421) has shown, the better disagreement can be predicted, the higher the value of 

Kappa, which conflates predictability with agreement.   

 Scott’s 𝜋𝜋 (phi) defines 𝐴𝐴𝑐𝑐 = ∑ �𝑝𝑝𝑘𝑘.+𝑝𝑝.𝑘𝑘
2

�
2

𝐾𝐾
𝑘𝑘=1 , so chance agreement here is the 

agreement that can be expected if classes are assigned to people with probabilities equal 

to the best available estimates of their true prevalence in the population (Scott 1955:324), 

that is, their average prevalence across mappings. Unlike Cohen’s 𝜅𝜅, Scott’s 𝜋𝜋 does not 

confuse predictability with agreement (Krippendorff 2004:420-421). Although a sound 

reliability index, 𝜋𝜋 has a “scope limitation” that it shares with S and 𝜅𝜅: none of these 

indices can be used to establish the reliability of data based on metrics other than the 

nominal metric (e.g., ordinal, interval, ratio). As we indicate below, 𝜋𝜋 is a particular case 

of our preferred and most general reliability index, Krippendorff’s α.  

 Before introducing this index, a few words regarding Cronbach’s 𝛼𝛼 (Cronbach 

1951), which is presented as a reliability measure and has often been used in sociology, 

seem in order. In our context, the relevant notion of reliability is reliability-as-

replicability—the reproducibility of results across functionally equivalent measurement 

instruments. Chronbach’s α, however, measures internal consistency (e.g., of the items in 

a psychometric test). Whatever its merits and limitations in this regard (see Sijtsma 2009 

for a detailed analysis), it belongs to the family of correlation coefficients, and it shares 

their shortcomings if used as a measure of reliability. 

Krippendorff’s Alpha 

Krippendorff’s α is defined (e.g., Krippendorff 2013:Ch. 12) as  
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𝛼𝛼 = 1 −
𝐷𝐷𝑜𝑜
𝐷𝐷𝑒𝑒

, 

where 𝐷𝐷𝑜𝑜 and 𝐷𝐷𝑒𝑒 are measures of observed and expected disagreement, respectively. 

Alpha ranges from 1 when there is no disagreement (that is, when there is perfect 

agreement), to 0 when observed and expected disagreement are the same.7  

In our case, which involves two occupation-to-class mappings per measurement 

strategy, observed disagreement can be expressed as: 

𝐷𝐷𝑜𝑜(𝑚𝑚) = within person average difference  

        =
1
𝑛𝑛
�𝑑𝑑𝑚𝑚�𝑣𝑣1𝑝𝑝, 𝑣𝑣2𝑝𝑝�
𝑛𝑛

𝑝𝑝=1

 ,                       

where n is the number of people in the reliability sample (i.e., the double-coded sample); 

𝑣𝑣𝑞𝑞𝑞𝑞 is the class assigned to person p by mapping q, 𝑞𝑞 = 1,2; and 𝑑𝑑𝑚𝑚 is the difference 

function under metric m, where m is nominal, ordinal, interval or ratio. Expressions for 

these difference functions are provided below.8 

The disagreement expected by chance is here the expected disagreement when the 

class values assigned to people are statistically independent from people’s actual values, 

and the marginal distribution of the values is the one implied by the actual assignments 

pooled across mappings. More precisely, assume a stochastic process in which the pair of 

class values found for each person (i.e., one value from each mapping) is the result of 

randomly selecting, with equal probability, one of the 2𝑛𝑛(2𝑛𝑛 − 1) 2-permutations (or 

partial permutations of size 2) of the set of 2𝑛𝑛 values actually assigned by the mappings 

to the n people in the reliability sample. A physical implementation of the random 
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assignment just described could be achieved as follows. For each unit in the reliability 

sample: (a) flip a coin to define which mapping “draws” first; (b) the selected mapping 

randomly draws one value from the 2n available values; and (c) the other mapping 

randomly draws one value from the remaining (2n - 1) values. Under this model of 

chance, expected disagreement is the average difference across all possible 2𝑛𝑛(2𝑛𝑛 − 1) 

2-permutations, which can be expressed as: 

𝐷𝐷𝑒𝑒(𝑚𝑚) = within data average difference                                

 =
1

2𝑛𝑛(2𝑛𝑛 − 1)
� � 𝑑𝑑𝑚𝑚(𝑣𝑣𝑘𝑘𝑘𝑘 , 𝑣𝑣𝑙𝑙𝑙𝑙)

2

𝑘𝑘=1,𝑙𝑙=1

.
𝑛𝑛

𝑖𝑖=1,𝑗𝑗=1

9   

The index can then be written as: 

𝛼𝛼(𝑚𝑚) = 1 −
2(2𝑛𝑛 − 1)∑ 𝑑𝑑𝑚𝑚(𝑣𝑣1𝑖𝑖, 𝑣𝑣2𝑖𝑖)𝑛𝑛

𝑖𝑖=1

∑ ∑ 𝑑𝑑𝑚𝑚�𝑣𝑣𝑘𝑘𝑘𝑘 , 𝑣𝑣𝑙𝑙𝑙𝑙�2
𝑘𝑘=1,𝑙𝑙=1

𝑛𝑛
𝑖𝑖=1,𝑗𝑗=1

,                      [2] 

where: 

𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑐𝑐,𝑘𝑘) = 𝐼𝐼(𝑐𝑐 ≠ 𝑘𝑘)                                

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑐𝑐,𝑘𝑘) = �� 𝐹𝐹𝑔𝑔 −
𝐹𝐹𝑐𝑐 + 𝐹𝐹𝑘𝑘

2

𝑔𝑔=𝑘𝑘

𝑔𝑔=𝑐𝑐
�
2

   

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐,𝑘𝑘) = (𝑐𝑐 − 𝑘𝑘)2                                

𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑐𝑐,𝑘𝑘) = �
𝑐𝑐 − 𝑘𝑘
𝑐𝑐 + 𝑘𝑘

�
2

,                          

I is the indicator function (i.e., a function that equals 1 if its argument is true and 0 

otherwise), and 𝐹𝐹𝑗𝑗 is the total number of observations assigned to category j by the two 

mappings combined.10  
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At least three well-known indices are particular cases of Krippendorff’s 𝛼𝛼 when, 

as here, only two mappings are included in a measurement strategy (Hayes and 

Krippendorff 2007; Krippendorff 1970): 𝛼𝛼 approaches Scott’s π when the sample is large 

and the metric is nominal, and it is equal to Spearman’s rank correlation coefficient and 

to Pearson’s intraclass correlation coefficient when the metrics are ordinal and interval, 

respectively. In addition, by making 𝐷𝐷𝑜𝑜 = 1 − 𝐴𝐴0 and 𝐷𝐷𝑒𝑒 = 1 − 𝐴𝐴𝑐𝑐, it is easy to see that, 

in the case of the nominal metric, 𝛼𝛼 is also a particular case of Zwick’s (1988) expression 

(see Equation 1).11  

Krippendorff’s 𝛼𝛼 is highly attractive as a reliability measure. It avoids the 

category mistake of conflating predictability and agreement. It takes into account that 

agreement may occur by chance, and it assesses deviations from perfect reliability by the 

proportion of observed to expected disagreement. Its (typical) range of variation has a 

clear interpretation, with 1 indicating perfect agreement and 0 indicating the same level 

of agreement as would be expected by chance.12 By modeling chance agreement as the 

agreement that would occur if classes were assigned to people independently from their 

actual classes, it avoids the drawbacks associated with other measures that also take into 

account that agreement may occur by chance. In particular, Krippendorff’s 𝛼𝛼 punishes 

dissimilarity (and rewards similarity) between mapping-specific marginal distributions, 

and is fully unaffected by the inclusion or exclusion of unused class categories. Further, 

𝛼𝛼 allows fair reliability comparisons between class measures of different granularity, and 

between class measures that operationalize different theoretical approaches. And it can be 

computed for literally any metric, which has the additional advantage of allowing 
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reliability comparisons even across metrics (e.g., of nominal versus interval social class 

variables). Lastly, 𝛼𝛼 admits several other useful interpretations (Krippendorff 2013: Ch. 

12), including that it measures the extent to which the proportion of the undesirable to 

total disagreements subtracts from perfect agreement, where desirable and undesirable 

disagreements (in the assignment of class values to people) are those between and within 

people, respectively, and total disagreement is the sum of these two types of 

disagreements. 

Krippendorff’s Alpha with nominal class variables: Computation and statistical inference 

 The expression for Krippendorff’s 𝛼𝛼 provided by Equation 2 is very general but is 

not convenient for computational purposes. Computationally simpler expressions are 

available, in particular when class variables have a nominal metric (Krippendorff 2011). 

As this is the relevant metric for our case study and for much research on class-based 

trends, in what follows we focus exclusively on the nominal-metric case.  

The computationally simpler expression we use is based on a coincidence matrix, 

which is a square and symmetric values-by-values matrix. This matrix records each pair 

of class values assigned to the people in the reliability sample twice, with the values in 

the pair “switching order.” For instance, if person p was assigned the pair of class values 

(𝑣𝑣1𝑝𝑝,𝑣𝑣2𝑝𝑝), both this pair and (𝑣𝑣2𝑝𝑝, 𝑣𝑣1𝑝𝑝) are included in the matrix. 

Figure 2 shows an example of how a coincidence matrix is constructed. In the 

example, the reliability sample includes six people and the class scheme comprises three 

class positions: manual worker (MW), non-manual worker (NMW), and professional or 

manager (PM). The left panel of the figure shows the reliability sample as a standard 
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dataset with people as observation units and two variables containing the class values 

assigned by the two mappings. The right panel shows the coincidence matrix constructed 

from these data (observe, in particular, that the total number of assigned values, i.e., 12, is 

the same in both cases). Figure 3 shows the notation we use to refer to the different 

quantities in a general coincidence matrix. Using this notation, the much-easier-to-

compute expression for α with a nominal class variable is: 

𝛼𝛼 = 1 −
𝐷𝐷𝑜𝑜
𝐷𝐷𝑒𝑒

=
𝐴𝐴𝑜𝑜 − 𝐴𝐴𝑐𝑐
1 −  𝐴𝐴𝑐𝑐

=

∑ 0𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝑡𝑡

− ∑ 𝑡𝑡𝑘𝑘𝐾𝐾
𝑘𝑘=1 (𝑡𝑡𝑘𝑘−1)
𝑡𝑡 (𝑡𝑡−1)

1 − ∑ 𝑡𝑡𝑘𝑘𝐾𝐾
𝑘𝑘=1 (𝑡𝑡𝑘𝑘−1)
𝑡𝑡 (𝑡𝑡−1)

         

=
(𝑡𝑡 − 1)∑ 𝑜𝑜𝑘𝑘𝑘𝑘𝐾𝐾

𝑘𝑘=1 − ∑ 𝑡𝑡𝑘𝑘𝐾𝐾
𝑘𝑘=1 (𝑡𝑡𝑘𝑘 − 1)

𝑡𝑡(𝑡𝑡 − 1) −∑ 𝑡𝑡𝑘𝑘𝐾𝐾
𝑘𝑘=1 (𝑡𝑡𝑘𝑘 − 1) ,          [3] 

where 𝑡𝑡 = ∑ 𝑡𝑡𝑘𝑘𝐾𝐾
𝑘𝑘=1  is the total number of assigned values (or twice the number of people 

in the reliability sample);  𝑡𝑡𝑘𝑘 is the absolute frequency of class value k in the marginal 

distribution of class values (or the total number of times the value k was assigned by the 

mappings); and 𝑜𝑜𝑘𝑘𝑘𝑘 is the k element in the main diagonal of the coincidence matrix (or 

twice the number of people both mappings coded as belonging to class k). As should be 

apparent, in contrast to Equation [2], computation of Krippendorff’s 𝛼𝛼 with Equation [3] 

is a very simple exercise once the coincidence matrix has been generated. 

 In addition to providing the basis for an easy-to-compute expression, working 

with a coincidence matrix makes it possible to conduct statistical inference without 

having to resort to resampling approaches, and to deal with complex sampling designs 

easily. To the best of our knowledge, neither of these two advantages has been previously 

discussed in the literature on Krippendorff’s 𝛼𝛼. 
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Let’s assume for now that both the main sample and the reliability sample are 

simple random samples (SRS)—the main sample a SRS of the population of ultimate 

interest, and the reliability sample a SRS of the main sample. A value of 𝛼𝛼 computed 

from a reliability sample is an estimate of the parameter of interest (the population to 

which that parameter pertains is discussed below), and is therefore subject to sampling 

variability. But the asymptotic distribution of 𝛼𝛼� is unknown, so previous research has 

proposed basing statistical inference on the nonparametric bootstrap (Hayes and 

Krippendorff 2007; Krippendorff 2013:Chapter 12). This is a highly computer- and time-

intensive approach (the recommended number of bootstrap samples is 20,000), and its 

implementation is somewhat complicated (see Krippendorff 2016 [2006]).  

The alternative approach we propose here is to use the “delta method” (e.g., 

Oehlert 1992). This involves computing, first, estimates of 𝑜𝑜𝑘𝑘𝑘𝑘 and 𝑡𝑡𝑘𝑘 for 𝑘𝑘 = 1, 2, … ,𝐾𝐾, 

which we denote by 𝑜𝑜�𝑘𝑘𝑘𝑘 and 𝑡̂𝑡𝑘𝑘, and of their variance-covariance matrix, which we 

denote by 𝑽𝑽�. With this information in hand, we can use that 𝛼𝛼� = 𝑔𝑔(𝑜𝑜�11 … 𝑜𝑜�𝐾𝐾𝐾𝐾, 𝑡̂𝑡1 … 𝑡̂𝑡𝐾𝐾) 

and therefore 𝑉𝑉𝑉𝑉𝑉𝑉� (𝛼𝛼�) = 𝑉𝑉𝑉𝑉𝑉𝑉� (𝑔𝑔(𝑜𝑜�11 … 𝑜𝑜�𝐾𝐾𝐾𝐾, 𝑡̂𝑡1 … 𝑡̂𝑡𝐾𝐾)), which allows a standard 

application of the delta method, and then do statistical inference using standard 

asymptotic procedures.13 Estimates of the elements of the coincidence matrix, and their 

variance-covariance matrix, can be generated very easily from data in standard form, 

regardless of the number of class categories.14  

Let’s now assume that while the reliability sample is a SRS of the main sample, 

the latter is not a SRS of the population of ultimate interest. Rather, the main sample has 

been drawn using a “complex survey design” (e.g., Heeringa, West and Berglund 2010; 
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Skinner, Holt and Smith 1989), such as a design with clustering, stratification, and 

uneven probabilities of selection. How should we compute the coincidence matrix in this 

context?  

One possible answer is that the parameter 𝛼𝛼 pertains to the main sample, i.e., that 

it characterizes the reliability of the data in the main sample regardless of the relationship 

of these data with the ultimate population of interest. Under this interpretation, the 

complex survey design used to draw the main sample should be ignored, 𝑜𝑜𝑘𝑘𝑘𝑘and 𝑡𝑡𝑘𝑘 

should be estimated using “unweighted estimators,” and 𝑽𝑽� should be computed using 

standard “SRS formulas.”  

A different—and, in our view, methodologically superior—answer is as follows. 

As we are ultimately concerned with the effects of data unreliability on the description of 

trends and the estimation of trend-relevant models, it seems natural to give more weight 

in our reliability assessments to the reliability of those data that represent larger segments 

of the population of interest. So, if there is a social class that is very unreliably coded, and 

the people that are assigned that class by either mapping have large sampling weights in 

the main sample, we want this fact to be reflected in our estimate of reliability. Formally, 

the parameter 𝛼𝛼 would pertain in this case not to the main-sample data but to the 

population data. That is, imagine that the full population of interest is coded using the 

two mappings. In this context, (a) 𝛼𝛼 has a specific value for the population, which we can 

estimate using “weighted estimators” of  𝑜𝑜𝑘𝑘𝑘𝑘 and 𝑡𝑡𝑘𝑘, and (b) our uncertainty regarding the 

true value of 𝛼𝛼 given our point-estimate 𝛼𝛼� = 𝑔𝑔(𝑜𝑜�11 … 𝑜𝑜�𝐾𝐾𝐾𝐾, 𝑡̂𝑡1 … 𝑡̂𝑡𝐾𝐾)  can be assessed by 
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computing 𝑽𝑽� with a “complex-survey formula,” i.e., a formula that does take into account 

the complex survey design used to draw the main sample (e.g., Skinner et al. 1989).15   

Regardless of what is deemed as the parameter of interest, if the reliability sample 

is not a SRS of the main sample, this typically cannot be ignored when generating the 

coincidence matrix—or, equivalently, the estimates of  𝑜𝑜𝑘𝑘𝑘𝑘 and 𝑡𝑡𝑘𝑘—and the associated 

matrix  𝑽𝑽�.  Further, when the reliability sample is not a SRS of the main sample and the 

main sample has been drawn using a complex survey design, then estimating the 

parameter 𝛼𝛼 for the ultimate population of interest rather than for the main-sample data 

requires taking into account both the sampling design used to draw the main sample from 

the population of interest and that used to draw the reliability sample from the main 

sample. 

As a companion to this article, we have made available a Stata program to 

compute Krippendorff’s 𝛼𝛼 when the class variable is nominal. The program uses the delta 

method for statistical inference and allows for the main features of a complex survey 

design to be taken into account. With this program, assessing the reliability of nominal 

class variables using the approach we have advanced here is a very simple endeavor.16 

3. Case study: Bridging the 1970-1980 U.S. occupational classification divide 

 As we mentioned in the introduction, unlike other changes in the U.S. Census 

Bureau Classifications of Occupations (COCs), the switch from the 1970 to the 1980 

classification involved a deep conceptual and empirical discontinuity. Indeed, the COCs 

changed little between 1940 and 1960, and even the 1970 classification—which increased 

the number of categories by almost 50 percent compared to the 1960 classification—is 
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organized along lines analogous to its predecessors. The 1980 and 1990 classifications, 

for their part, are almost identical. However, in spite of the fact that it only involved a 14 

percent increase in the number of categories compared to the 1970 classification, the 

1980 classification constituted a major departure from previous ones (Vines and Priebe 

1989). 

 As we pointed out earlier, researchers have interpreted this discontinuity as 

making very difficult, if not simply precluding, consistent measurement of social class 

across the 1970-1980 divide, in particular with the widely-used EGP class scheme (e.g., 

Erikson and Goldthorpe 1992). Here we will examine whether the difficulties are as 

fundamental as has been claimed. To this end we use data from the GSS 1988-1990, in 

which all observations have been double-coded using both the 1970 and  the 1980 

COCs.17  

We start by briefly describing the logic and categories of the full version of the 

EGP class scheme. Next, we characterize the various measurement strategies we 

consider. After that, we present the main results of our reliability analysis, both for the 

class of the respondent and for the class of his or her father, and document the 

correspondence between a strategy’s reliability (as measured by Krippendorff’s 𝛼𝛼) and 

its performance in an illustrative analysis in which we estimate a widely-used model of 

intergenerational mobility. We finish the section by discussing the results of our case 

study. 

 

 



19 
 

The EGP class scheme 

Table 1 shows the full version of the EGP class scheme, with the different classes 

identified, as is conventional, by roman numerals (later we will refer to “collapsed 

versions,” in which the class scheme is defined at lower granularities). The theoretical 

foundations of the scheme have been discussed in detail by Erikson and Goldthorpe 

(1992) and Goldthorpe (2000), among others; here we  provide a brief overview. 

The EGP class scheme is based, in part, on the distinction between those who own 

the means of production and those who do not and are employed by others. Classes IVa, 

IVb, and IVc are made up of small-scale owners, or the “petty bourgeoisie.” Class IVa is 

the nonfarm petty bourgeoisie with employees, class IVb is the nonfarm petty 

bourgeoisie without employees, and class IVc includes all farmers. The other ten classes 

are comprised mostly of non-owners/employees, but for partially pragmatic (and not 

uncontroversial) reasons, large employers are included in one of those classes (see 

Erikson and Goldthorpe 1992:40-41).  

Employees are further differentiated by distinguishing between those whose jobs 

are regulated by a “labor contract” and those whose jobs are regulated by a “service 

relationship” with the employer (Erikson and Goldthorpe 1992). Jobs tend to be set up as 

labor contracts when the work they involve is relatively easy to monitor and the skills and 

knowledge they require are easily found in the market. In such circumstances, payment is 

for discrete amounts of work and there is little attempt to secure a durable relationship. 

On the other hand, jobs tend to be set up as service relationships when the skills and 

expertise they require are harder to find in the market, or when monitoring work is more 
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difficult. Service relationships offer strong incentives for the employee to align his or her 

interests with the employer, such as pre-established salary increases over time, well-

defined career opportunities, job security, and pension rights.  

In the EGP scheme, classes I and II (professional, administrative, and managerial 

workers) include those people whose jobs best fit the service-relationship 

characterization, while classes VI and VII (skilled and unskilled manual workers) and 

IIIb (“lower-grade” routine non-manual occupations) comprise those people whose jobs 

best fit the labor-contract characterization. The two remaining classes are mixed or 

intermediary cases. People in class IIIa (e.g., clerks) hold jobs that don’t require 

specialized skills but do involve some monitoring difficulties. Those in class V (skilled 

manual workers) hold jobs where monitoring is not a problem but some specialized skills 

are required. 

Measurement strategies 

We examine seven different measurement strategies, which implement three 

different measurement approaches. As discussed earlier, any measurement strategy 

involves two mappings from occupation to social class—one for the first occupational 

classification, and one for the second. We term the three different approaches to 

generating these two mappings the direct approach, the internal indirect approach, and 

the external indirect approach. The direct approach involves defining the two mappings 

independently of each other. The occupations in each occupational classification (and 

possibly other variables) are separately mapped into social class categories by assessing 
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their conceptual relationship to the class categories. This approach was used by Hout 

(2005) and Pfeffer and Hertel (2015).  

In the internal indirect approach, one of the two occupational classifications is 

first mapped into the other classification, and then the second classification is mapped 

into class categories—so here one of the final mappings is the result of concatenating two 

intermediary mappings. This approach requires a “crosswalk” between the two 

occupational classifications based on analyses of double-coded data. A crosswalk shows 

how the people in each category of one classification are distributed among the categories 

of the other classification. For instance, one of the crosswalks used in our analyses shows 

that among people coded as “architects” under the 1970 classification, 88 percent are 

classified as “architects” under the 1980 classification and the remaining 12 percent are 

split between “civil engineers” (7 percent) and “marine engineers and naval architects” (5 

percent). Whenever more than one possible destination occupation exists for a given 

origin occupation, the occupation that is the most likely destination based on its relative 

frequency among potential destination occupations is the one selected. This indirect 

approach was employed by Mitnik et al. (2016) and Weeden et al. (2007).  

In the external indirect approach, each primary occupational classification is 

mapped into an “external” occupational classification (which may be the same or 

different for the two primary classifications). Then the external classification (or 

classifications) are mapped into EGP classes. In this case, both final mappings are the 

result of concatenating two intermediary mappings. As discussed in more detail below, 



22 
 

Beller (2009) used an external classification in order to code EGP classes, but without 

crossing the 1970-1980 divide. 

 Table 2 describes the measurement strategies we examine, and Table 3 lists the 

EGP classes that these strategies produce at three granularities: high, intermediate, and 

low. The first strategy we consider (strategy A) uses the direct approach. This strategy 

was used by Hout (2005) and is based on two separate occupation-to-class mappings, one 

from the 1970 COC and one from the 1980 COC. At its highest granularity, the resulting 

classification includes nine classes; of these, three are classes in the full version of the 

EGP scheme, three are aggregations of classes from that scheme, and the remaining three 

are the result of taking managers out of classes I and II to separate them from upper and 

lower professionals.  

Strategies B through E all employ the internal indirect approach, using in all cases 

crosswalks generated by the U.S. Census Bureau (see Vines and Priebe 1989: Tables 1 

and 2). We refer to these crosswalks as the 19701980 crosswalk (showing the 1980 

COC distribution for each occupation in the 1970 COC) and the 19801970 crosswalk 

(defined analogously). Strategy B uses the 19701980 crosswalk to map the 1970 COC 

into the 1980 COC, and then applies Hout’s mapping of the 1980 COC into EGP classes 

also used in strategy A. Strategy C proceeds in a similar way, but with the 1970 COC as 

the “bridge” classification: it uses the 19801970 crosswalk to map the 1980 COC into 

the 1970 COC, and then uses Hout’s mapping of the 1970 COC into EGP classes. 

Strategy D is based on a mapping of the 1980 COC into EGP classes that was used in an 

auxiliary sensitivity analysis by Beller (2009: Ftn. 4); this mapping was also developed 
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by Michael Hout.18 In Table 2 we refer to it as the Beller-Hout mapping. We combine it 

with the 19701980 crosswalk to map the 1970 COC into EGP classes. This 

measurement strategy was used by Mitnik et al. (2016). Table 3 shows that strategies B 

through D produce the same approximate EGP categories as strategy A.  

Strategy E is based on the mapping from the 1980 COC into EGP classes used by 

Morgan and Tang (2007). We combine it with the 19701980 crosswalk in order to map 

the 1970 COC into classes. A similar strategy was used by Weeden et al. (2007). Table 3 

shows that, at its highest granularity, this strategy produces almost all of the classes in the 

full EGP scheme—the only exception being that classes IVa and IVb are collapsed into 

one class. 

Finally, we examine two measurement strategies based on the external indirect 

approach. In both, the external classification used is the International Standard 

Classification of Occupations (ISCO). The ISCO is widely employed in cross-national 

research, as it was developed to give researchers a way to consistently classify 

occupations across countries. It has been revised several times, so to date there are four 

versions: ISCO-58, ISCO-68, ISCO-88, and ISCO-08. The GSS recodes the 1970 COC 

into ISCO-68, and it recodes the 1980 COC into both ISCO-68 and ISCO-88.19  

Ganzeboom and Treiman have developed mappings from ISCO-68 and ISCO-88 

into EGP classes; we will refer to these widely-used mappings as GT-68 and GT-88 (see, 

e.g., Ganzeboom and Treiman 1996). In her research with GSS data, Beller (2009) used 

the GSS’s 1980 COCISCO-88 recode and GT-88 to generate EGP classes, at an 

intermediate granularity, for the period 1994-2007.20  We use a similar approach with 
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measurement strategies F and G. Strategy F defines one mapping by combining the 

GSS’s 1980 COCISCO-88 recode and GT-88, and the other by combining the GSS’s 

1970 COCISCO-68 recode and GT-68. Strategy G is similar, but substitutes the GSS’s 

1980 COCISCO-68 recode and GT-68 to define the first of the two mappings. Table 3 

shows that, at their highest granularity, both strategies produce nine classes: seven are 

classes from the full version of the EGP scheme, and the remaining two are aggregations 

of classes in that scheme (IIIa + IIIb, and IVa + IVb).21  

In addition to assessing the reliability of all measurement strategies at the highest 

granularity available, we also assess it at the intermediate granularity used in most 

empirical research. We consider two different ways of collapsing the full EGP scheme 

into six classes, which only differ in how they treat routine non-manual employees, lower 

grade (IIIb) (see Table 3).22 The first stresses the divide between manual and non-manual 

workers, with all routine non-manual workers grouped into one class (IIIa + IIIb). This 

way of collapsing EGP classes is very close to the widely-used seven-class version (or 

CASMIN version) of the EGP scheme (Erikson and Goldthorpe 1992)—the only 

difference being that we assign all people working in agriculture to the same class, while 

the CASMIN version keeps farmers (IVc) and agricultural workers (VIIb) as two 

different classes. 23 We refer to this granularity as the “intermediate (manual/non-manual) 

granularity.”  

The second six-class version of the EGP scheme we consider includes all nonfarm 

lower-skill/lower-wage workers in one class, regardless of whether they are manual or 

non-manual workers, by combining classes IIIb  and VII (nonfarm semi- and unskilled 
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manual workers). Mitnik et al. (2016) collapsed the EGP scheme in this way because 

prioritizing income similarities across classes rather than the manual/non-manual divide  

was more appropriate for their goal of exploring the relationship between the post-1980 

income-inequality take off and social-fluidity in the U.S.24 We refer to this granularity as 

the “intermediate (income-based) granularity.”  

Finally, we assess the various measurement strategies at the minimum level of 

granularity that is possible, i.e., when there are only two classes. Given recent arguments 

on the centrality of the divide between professional and managers, and all other classes, 

for the study of trends (Mitnik et al. 2016), we focus here on a two-class version of the 

EGP scheme that only distinguishes classes I and II from all other classes. 

Main reliability results 

We present here the main results of our reliability analysis. As previously 

indicated, our analysis is based on the double-coded data in the 1988-1990 GSS. We 

constrain our sample to subjects ages 18-64, and estimate the reliability of EGP class 

measures for men and women separately, and for “all” (i.e., men and women pooled). We 

also estimate the reliability of measures of father’s class, in two different ways.25 In one 

case, we use the same EGP schemes that we use for men and women and drop all 

observations for which the father was absent from the household when the subject was 16 

years old (the information on the subject’s father pertains to that age). In the other case, 

we proceed as Mitnik et al. (2016), and add the category “non-resident father” to the EGP 

scheme. We refer to the resulting “population” as “fathers (expanded).” Table 4 shows 

the number of observations used to assess reliability in each case.26 
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Table 5 presents point estimates of Krippendorff’s 𝛼𝛼 (in bold), and the 

corresponding confidence intervals (in parentheses).27 The first three columns include the 

results for the EGP class of all respondents combined, and of men and women separately. 

The last two columns show the results for fathers’ EGP class. Estimation of 𝛼𝛼 is quite 

precise, so most of our discussion focuses on the point estimates.  

The estimated values of 𝛼𝛼 exhibit a great deal of variability—they span the range 

0.56 to 0.90, with a mean of 0.77 and a median of 0.78. They also show clear patterns 

across strategies. Some of these patterns are particularly apparent in Figure 4, where we 

use different colors to distinguish the values of 𝛼𝛼 according to the approach of the 

corresponding measurement strategy, and display those values separately for all 

respondents, men, women, fathers, and fathers (expanded) at each granularity.   

The most important of these patterns is the near-perfect ordering of the 

strategies—within population-granularity pairs—by approach, with those strategies using 

the internal indirect approach (B, C, D, and E) outperforming all others in nearly every 

case, and the strategy using the direct approach (A) never outperformed by (and mostly 

outperforming) those using the external indirect approach (F and G). For the intermediate 

(manual/non-manual) granularity (the granularity most often employed in empirical 

research), the seven strategies are perfectly ordered by approach, regardless of 

population. At the other three granularities the pattern is very similar, though in some 

cases strategy A outperforms strategy E.  

What drives the ordering of the strategies by approach? To answer, we need to 

distinguish between two types of mappings between classifications. There are mappings 
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that are generated through a fully objective procedure, such as those based on the 

19701980 and 19801970 crosswalks. The crosswalks result from a simple cross-

tabulation of a double-coded dataset.  Once the double-coded data on which a crosswalk 

is based are available, the associated mapping could be fully generated—at least in 

principle—by a computer program. Therefore, we may refer to mappings like this as 

“mechanical mappings.” In contrast, there are mappings that rely in an essential way on a 

researcher’s judgment regarding the relationship between the categories in two 

classifications, as is the case with all mappings from occupational classifications into 

EGP classes. Although these mappings are based on objective facts that clearly constrain 

which occupations may be reasonably mapped into which EGP classes, they involve an 

unavoidable element of discretionary subjective judgment. We may refer to these 

mappings as “non-mechanical mappings.”  

Our hypothesis is that, within granularity-population pairs, reliability performance 

is mostly accounted for by the number of non-mechanical mappings a measurement 

strategy relies upon. Or, in other words, that reliability performance is largely accounted 

for by the extent to which a strategy relies on subjective judgments regarding 

relationships between classifications. 

 The strategies based on the internal indirect approach (which we found to 

produce the most reliable class measures) use only one non-mechanical mapping—the 

mapping of one occupational classification into EGP classes. Here the second 

occupational classification is mapped into the first through a mechanical mapping, and 

then mapped into classes using the same non-mechanical mapping employed with the 
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first classification.28 The direct approach, in contrast, involves two non-mechanical 

mappings, because each occupational classification is mapped separately into classes. 

The one strategy we consider that is based on the direct approach, strategy A, is 

consistently out-performed by the four strategies based on the internal indirect approach.  

The strategies we examine that use the external indirect approach involve even 

more non-mechanical mappings: strategy F uses four while strategy G uses three. 

(Strategy F uses non-mechanical mappings of the two COCs into two different ISCOs, 

and then uses two non-mechanical mappings to map the ISCOs into EGP classes. 

Strategy G differs only in that it maps both COCs into the same ISCO, so it requires only 

one ISCOEGP mapping.) Consistent with our hypothesis that reliability is closely 

related to the number of non-mechanical mappings employed, these two strategies are 

consistently the least reliable of our seven, and F performs substantially worse than 

strategy G. Indeed, strategy F has the lowest reliability of all strategies, for all 

populations. This is the case for all granularities at which this strategy can be 

implemented, but most notably at the high measurement granularity, where its 

performance is about two standard deviations below the mean.29 

In addition to the ordering of strategies by approach, some granularity-related 

patterns are also apparent. Table 5 and Figure 4 show that, regardless of strategy, there is 

in nearly all cases a gain in reliability (and never a loss) when switching from the high 

granularity to the other granularities. As Krippendorff’s α does take into account that 

chance agreement is more likely as the granularity of a measure falls, this pattern reflects 

a real reliability penalty attached to working with high-granularity measures. At the same 
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time, the reliability gains from switching from the high to the low granularity are only 

substantial for strategies E, G, and F, and are largest for the latter (which, as indicated, 

performs very poorly at the high granularity). Moreover, for the best-performing 

strategies (B, C and D), reliability at the intermediate granularities tends to be higher than 

at both the high and the low granularities, although only slightly so in most cases. For 

five of the seven strategies, we can also compare the values of α across the two 

intermediate granularities. Table 5 indicates that the class measure is less reliable at the 

intermediate (income-based) granularity than at the intermediate (manual/non-manual) 

granularity in the case of strategies C and E, while the differences are either nil or 

negligible in the other cases.  

For the most part, there are only small differences in reliability across 

“generations” (men versus fathers). When non-resident fathers are included, the values of 

𝛼𝛼 for fathers are quite substantially larger than those for men (Figure 4 and Table 5), but 

this is only because there is always agreement across mappings when non-resident fathers 

are added as a separate category. When non-resident fathers are excluded from the 

analysis, the values of 𝛼𝛼 for fathers tend to be slightly smaller than those for men in the 

case of strategies A and B, and slightly larger otherwise.   

Gender does not seem to make any difference, i.e., Table 5 does not suggest any 

consistent gender advantage in reliability. The values of α tend to be slightly higher for 

women than for men in strategies A, C, E, and G, the other way around in strategies D 

and F, with gender differences varying in sign across granularities in the case of strategy 

B.  
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Table 6 reports the results of a linear regression of 𝛼𝛼 on the number of non-

mechanical mappings (entered as a nominal variable), granularity, gender, and 

generation. All estimates are consistent with the patterns identified in our qualitative 

analysis. In particular, the coefficients for two, three, and four non-mechanical mappings 

are all negative, substantial in magnitude, and statistically significant. The value of the 

adjusted 𝑅𝑅2 indicates that about four-fifths of the observed variation in 𝛼𝛼 is accounted by 

the explanatory factors included in the regression.30 

We finish our main reliability analysis by presenting, in Table 7, the results of 

testing the null hypothesis that the value of 𝛼𝛼 is not larger than 0.75 for each 

measurement strategy, at each granularity and for each population we consider. We use 

0.75 as a threshold for an “acceptable” level of reliability; this value is in line with 

thresholds that have been used in several other related contexts.31 If the null hypothesis is 

rejected, we can be reasonably confident that a measurement strategy produces class 

measures that are reliable enough to be employed in empirical analyses.   

This table underscores again that the strategies based on the internal indirect 

approach (strategies B through E) produce class measures that are clearly superior in their 

reliability to strategies based on the other approaches. Strategies B and D perform 

particularly well. For the latter, the null hypothesis can be rejected for all granularities 

and populations; for the former, it can be rejected for all granularities and populations 

except one. For the strategies using the external indirect approach—F and G—the null 

cannot be rejected for any population, regardless of granularity (ignoring the expanded 
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scheme for fathers). Strategy A, which uses the direct approach, falls somewhere in 

between.  

At the highest level of granularity—and again ignoring the expanded scheme for 

fathers—the null can only be rejected for the best-performing strategies (i.e., B, C and 

D). At the intermediate manual/non-manual granularity most often used in empirical 

research, the null is very clearly rejected for all populations when using strategies B, C, D 

and E (all of which are based on the indirect internal approach and use only one non-

mechanical mapping), but not with the other strategies.  

Illustrative analysis: The core model of social fluidity 

The “core model of social fluidity,” developed by Erikson and Goldthorpe (1992), 

is used widely in the field of intergenerational class mobility (see, e.g., Breen 2004). We 

estimate it here for men ages 31-64, using the double-coded data from the GSS 1988-

1990 we employed in our previous analyses.32 For each of our seven measurement 

strategies, we estimate the same model twice, once using the EGP class measure based on 

the 1970 COC and once using the class measure based on the 1980 COC. We use class 

measures at the intermediate (manual/non-manual) granularity. This illustrative analysis 

will allow us to show that the extent to which results differ within measurement 

strategies, i.e., across occupational classifications, is strongly related to their reliability 

performance as measured by Krippendorff’s 𝛼𝛼. 

The reliability estimates for the sample used in the analysis are presented in Table 

8. The table includes estimates of α for the EGP class of men ages 31-64 and for the EGP 

class of their fathers (as well as the corresponding p-values for the null hypothesis that 
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𝛼𝛼 ≤ 0.75). In the context of content analysis, Krippendorff (2013: 326) has argued  that 

“it is a serious mistake to average the reliabilities of the variables of a complex 

instrument and take this average as a measure of overall data reliability  . . . [g]enerally, 

when variables are equally important to the research effort . . . the lowest α among them 

is the reliability of all data” (italics omitted). This suggests using the minimum of men’s 

and their fathers’ α (or “minimum α”) as the relevant measure of reliability when 

comparing strategies. This is what we do below. 

We estimate the “U.S. variant” of the core model of social fluidity (Erikson and 

Goldthorpe 1992:121-131, 318-319). As the model is very well known, we will not 

present it in any detail here. However, to facilitate understanding of the discussion that 

follows, we remind the reader that this is a log-linear, or multiplicative, model of the cells 

of a mobility table (i.e., a cross-tabulation of the subject’s and his father’s EGP class), 

and that the predicted quantities in the model are the expected frequencies in each cell of 

that table. We will focus on eight key parameters: parameters h1 and h2, which aim to 

capture the effects on relative-mobility patterns of barriers to movements across classes at 

different hierarchical levels; parameters i1 and i2, which reflect the tendency of sons to 

inherit the class position of their fathers; parameter s, which measures barriers to 

movements between agricultural and nonagricultural class positions; and parameters a1, 

a2, and ax, which measure affinity among class positions. We refer to these eight 

parameters as “model-specific parameters.” As is standard in models of relative mobility 

based on mobility tables, the core model also includes other parameters aimed at 
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capturing the main effects of the distribution of individuals over origin and destination 

classes, and the scale of the table.33 

 Figures 5a and 5b display, for each measurement strategy, a graph with the 

estimates of the model-specific parameters with the two EGP measures.34 The darker bars 

show the parameter estimates using the class measure based on the 1970 COC; the lighter 

bars show the estimates using the class measure based on the 1980 COC. The strategies 

are arranged in decreasing order of reliability (as measured by their minimum α)—that is, 

the first graph corresponds to the strategy with the highest reliability, the second graph to 

the strategy with the second-highest reliability, and so forth. The first two graphs are 

those for strategies D and B, whose minimum α is close to 0.8. For these strategies with 

relatively high reliability, the estimates based on the 1970 and 1980 COCs are extremely 

similar (although clearly not identical). At the other end of the spectrum, the graphs for 

strategies A, G and F, whose minimum α is in the 0.67-0.72 range, show large within-

graph discrepancies in the estimates of the inheritance parameters i1 and i2 (other 

discrepancies are similar in magnitude to those found in the case of strategies D and B). 

Importantly, the differences between the estimated inheritance parameters are very 

consequential for the qualitative conclusions that can be drawn. For instance, if i1 is 

equal to one, that means that—once all other forces included in the model are 

considered— sons are not more likely to be found in the same class positions as their 

fathers. The null hypothesis that this is the case cannot be rejected if the confidence 

interval for the parameter includes one. With strategies A, G, and F, the confidence 

interval covers the value one with one occupational classification but not with the other. 
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Not rejecting the null would go against “one of the most secure findings of mobility 

research” (Erikson and Goldthorpe 1992: 125). 

The graphs for strategies E and C, whose minimum α is 0.76 in both cases, 

indicate that the magnitude of discrepancies for these cases is in between those found for 

the other two groups. Thus, considered jointly, the estimates in Figures 5a and 5b reveal a 

clear correspondence between reliability levels and qualitative assessments of the 

consistency of the estimates across occupational classifications. 

 For some purposes, researchers may care about the operation of the full model 

rather than about specific parameters. In this context, one way of assessing how much the 

estimates of the model as a whole differ across occupational classifications is by defining 

loss functions whose arguments are the differences in predicted frequencies in the cells of 

the mobility table. These loss functions capture the net effect of differences in the 

estimates of all parameters at once. The expectation is that we will observe again a clear 

correspondence between reliability and the losses defined by these loss functions. 

 As table totals vary slightly across measurement strategies, it is more convenient 

to work with predicted relative frequencies than with predicted frequencies (which are the 

quantities directly predicted by the model). To carry out the analysis, we define four loss 

functions that vary in two dimensions: (a) whether they measure the distance between 

predicted values as absolute differences or as absolute proportional differences, and (b) 

whether they use the arithmetic mean or the median as summary measure of the observed 

differences.35 The resulting loss functions are thus the mean and median absolute 

differences in predictions, and the mean and median absolute proportional differences in 
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predictions, across occupational classifications.36 We will refer to the losses defined by 

these four loss functions as “prediction losses.”    

Figure 6 presents plots of the prediction losses against the minimum α. It includes 

one graph for each loss function, with the loss in the vertical axis and the minimum α in 

the horizontal axis. For all loss functions, there is a clear negative relationship between 

the values of α and the size of the losses, with the dots representing the most reliable 

strategies clustered in the right-bottom quadrant of the graphs, and those representing the 

other strategies appearing in the left-upper quadrant. Spearman rank correlations are 

negative and large in all cases, i.e., their absolute values are in the 0.71-0.79 range. The 

expectation of a clear correspondence between values of α and prediction losses is borne 

out by these results.  

 Figure 6 also indicates that for the best-performing strategy in terms of reliability 

(strategy D), the mean and median differences in predicted relative frequencies are 

smaller than 0.3 and 0.2 percentage points, respectively. The proportional differences are 

also small, around 10 percent. The other three strategies with reliability above 0.75 (B, C 

and E) do not do as well as D—but they do not do much worse either, especially in terms 

of the median loss functions, which are much more robust to outlier differences. Among 

the three strategies with lower reliability values—all of which tend to post much larger 

losses—strategy A performs much worse than F and G, in spite of a larger minimum α. 

The reason for this is that with strategy A the disagreements in coded EGP classes across 

the 1970 and 1980 COCs are disproportionally concentrated in one category, nonfarm 

self-employment (disagreements are much more evenly distributed with all other 
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strategies). This has a large impact on the estimates of the main effects of the distribution 

of individuals over origin and destination classes, which translates into much larger 

differences in predicted frequencies.37  

Discussion 

Our case study has made clear that measurement strategies that may seem equally 

sensible a priori differ markedly in the reliability of the class measures they generate. At 

the crucial intermediate (manual/non-manual) granularity used most often in empirical 

research, reliability, as measured by Krippendorff’s α, is between 13 and 27 percent 

higher with the best-performing measurement strategy than with the worst-performing 

one (with the exact figure depending on the population). The reliability differential is 

even higher at the high granularity, where α is between 26 and 38 percent higher with the 

best performer. 

Importantly, there seems to be a simple logic to the reliability differences 

observed within granularity-population pairs, as the variation in performance among the 

seven strategies is largely accounted by the number of non-mechanical mappings they 

employ. Thus, the analysis suggests that the fewer “researcher degrees of freedom” that 

go into defining a measurement strategy, the more reliable the data tend to be.  

The case study has uncovered trade-offs between reliability and granularity, but 

these are somewhat complex. Although it is the case that the lower the granularity the 

higher the percentage of agreements across occupational classifications, it is not the case 

that, in general, the lower the granularity the higher the reliability of the data. For nearly 

all populations and measurement strategies, there are reliability penalties associated with 
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measuring at a high granularity compared to measuring at both the intermediate and low 

granularities. However, there is no consistent penalty from measuring at the intermediate 

granularities compared to measuring at the low granularity, as in this case reliability only 

increases consistently across populations for the worst performers, while it often falls or 

stays the same for the more reliable strategies. Lastly, all granularity penalties tend to be 

rather small with the best-performing strategies.  

We examined two different ways of collapsing the full EGP scheme into an 

intermediate granularity. Mitnik et al. (2016) have argued that the standard way of 

collapsing EGP categories in empirical analyses—i.e. the CASMIN version of the EGP 

scheme, which is similar to our intermediate (manual/non-manual) granularity—is, for 

some purposes, conceptually less appealing than an approach that prioritizes income 

similarities across classes rather than the manual/non-manual divide. Our results indicate 

that there is a non-negligible reliability cost from using the income-based approach with 

two of the five strategies for which we could compare the approaches. (Neither of those 

two strategies is the one used by Mitnik et al. in their own research.)  

Our illustrative analysis focused on the core model of social fluidity, and showed 

a clear correspondence between values of α and qualitative assessments of the 

consistency of the estimates of its model-specific parameters across occupational 

classifications. A quantitative, and more holistic, assessment based on prediction losses 

also indicated correspondence. It showed a clear separation of the measurement strategies 

into two groups, with those with reliability lower than 0.75 tending to post much larger 

losses, and with the associated rank correlations between prediction losses and values of 
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α all above 0.7 and some close to 0.8. These results provide reassurance that α works as 

expected.  

At the same time, in the analysis of prediction losses, within-group ranks based 

on the minimum α do not match well the corresponding ranks based on losses. This is 

particularly the case for the lower-reliability group, in which strategy A performs 

substantially worse than strategies F and G despite its higher α. Other empirical analyses, 

whose results we did not include here to save space, exhibit similar patterns. This 

suggests that researchers should not use values of α to mechanically rank measurement 

strategies, but rather should use them to (a) discard strategies that are below some 

minimum value deemed acceptable, (b) among those strategies that are acceptable, only 

use values of α to rank strategies (in terms of their reliability) if the differences between 

those values are substantial, and (c) report the value of α for the measures actually used in 

their empirical analyses. 

What may be deemed an acceptable value of α? Based on threshold values used in 

related contexts (see note 31) and on the results of our empirical analyses, we suggest 

that, as rule of thumb, a class measure be judged acceptable if the null hypothesis that 

𝛼𝛼 ≤ 0.75 is rejected at the conventional significance level. And that, when comparing 

strategies for which this null hypothesis can be rejected, only differences in the value of  

α of about 0.04 or larger be considered informative. In spite of the fact that our 

acceptability criterion may seem somewhat conservative, the class variables generated by 

four of the measurement strategies we examined satisfy it for all populations (Table 7). In 

the case of the data used in our illustrative study (men ages 31-64 and their fathers), 
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Table 8 indicates that strategies B and D satisfy the criterion for both the subject- and the 

father-class variables (with strategies C and E satisfying it for the father but not for the 

subject).  

4. Conclusions 

Periodic changes in occupational classifications may be a serious obstacle for 

conducting research on class-based trends. The magnitude of the problem, however, does 

not only depend on the nature and scope of the changes, but also on the measurement 

strategies used to address them. We have proposed here that scholars interested in 

conducting research on class-based trends use Krippendorff’s α to assess the reliability of 

class measures generated from data coded using different occupational classifications.  

This reliability index has many desirable properties. It does not conflate 

predictability with agreement in class values. It takes into account that agreement may 

occur by chance, using for this purpose a methodologically appealing conception of 

chance. It has a range of variation with clear reliability interpretations. It may be 

computed regardless of the metric of the class variable. It may be legitimately used to 

compare measurement strategies across class schemes, metrics, and granularities, which 

allows evaluation of various reliability-related trade-offs (for instance, from working at a 

higher rather than at a lower granularity, or from using one class scheme rather than 

another). Lastly, coincidence-matrix formulas typically used to simplify computation also 

allow straightforward estimation and statistical inference—based not in the resampling 

approaches employed in the reliability literature but in the much less time- and computer-

intensive delta method—even in the context of complex sampling designs. For nominal 
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variables, a computer program made available as a companion to the paper, and which 

implements the approach for statistical inference suggested here, makes both estimation 

and inference very simple and fast endeavors. 

We put Krippendorff’s α to work in conducting a case study of the effects of the 

switch from the 1970 to the 1980 U.S. Census Bureau occupational classifications on the 

reliability of EGP class measures. We found that the reliability of EGP class measures 

varies substantially across measurement strategies that, a priori, seem equally sensible. In 

addition, our analysis suggested that the main driving force behind that variation is the 

extent to which researchers’ subjective judgments play a role in defining a strategy.  

Class scholars have maintained that the discontinuity resulting from the switch in 

occupation classification has made it very difficult, if not impossible, to consistently 

measure social class across the 1970-1980 divide, in particular with the EGP class 

scheme. The results of our study suggest, however, that as long as the right measurement 

strategies are employed, the problems generated by that switch are substantially less 

consequential than previously argued. The best-performing strategies appear to produce 

data reliable enough to study class-based trends, in particular at the intermediary level of 

granularity typically used in empirical research.  
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Notes 

1 See for instance Wright and Martin (1987) on changes over time in the class structure, 

McCall and Manza (2011) on political attitudes across classes, and Breen and Jonsson 

(2007) on intergenerational social mobility.  

2 Other references to the difficulties generated by the 1970s-1980s divide can be found, 

for example, in Hauser (1998:14), Morgan and Cha  (2007, Supp. App.:2 ), and Weeden 

and Grusky (2004).  

3 Pfeffer and Herter (2015: Note 7 and Online Supplement) report that they conducted a 

sensitivity analysis of the stability of the fluidity trends they find to changes in 

occupational classifications. Mitnik et al. (2016: Note 13) report testing the procedures 

they used to address the change in classifications by double coding EGP class using the 

1970 and 1980 classifications in the three years (1988–1990) in which that is possible, 

and that the results were very consistent and no worse than those obtained using other 

procedures. Neither article offered any details about these analyses.  

4 As we mentioned earlier, sometimes other variables, such as indicators for self-

employment or supervisory responsibilities, are used in addition to occupation in order to 

determine the class of a person. These other variables should always be assumed to be 

implicit when we refer to the derivation of classes from occupations, i.e., classes may be 

actually derived from occupations and other variables even when we do not mention the 

latter explicitly. 

5 To be more precise, the mappings are implicitly or explicitly defined by those sets of 

rules. A mapping is technically a mathematical function. It relates each occupation—that 
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is, each element in its domain—to one, and only one, class value—an element in its 

codomain. Thus, different sets of rules (which are typically implemented through 

computer code) may define the same mapping. If classes are derived from occupations 

and other variables, then the mapping is a multivariate function.  

6 As Mielke and Berry put it, reflecting the dominant position in the literature, “any 

agreement coefficient should reflect the amount of agreement in excess of what would be 

expected by chance” (2001:134).  

7 Although of no practical significance, as all reasonable measurement strategies should 

produce values of α well above zero, in principle the index can become negative if 

observed disagreement is higher than expected disagreement. This should only happen 

when there are small samples or systematic disagreements, e.g., if the mappings are 

designed with the goal of maximizing disagreements. 

8 Other metrics can also be used, but the four listed should cover all cases of interest for 

this paper. Although the index can be defined for situations in which any finite number of 

occupational classifications have been employed over time, we develop it here for the 

case that is relevant from a practical point of view, as subsamples in which observations 

have been coded with more than two occupational classifications are generally not 

available. For the extension to three or more classifications (“coders”), see Krippendorff 

(2011; 2013).  

9 This expression sums 4𝑛𝑛2 terms, so the question may arise of why this is the average 

difference over 2𝑛𝑛(2𝑛𝑛 − 1) permutations. The trick is to recognize that 𝑑𝑑𝑚𝑚(. ) = 0 
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whenever 𝑖𝑖 = 𝑗𝑗 and 𝑘𝑘 = 𝑙𝑙, regardless of the measure m. This happens 2𝑛𝑛 times, and 

4𝑛𝑛2 − 2𝑛𝑛 = 2𝑛𝑛(2𝑛𝑛 − 1). 

10  Assume there are 18 people in the sample and three classes: “high,” “middle,” and 

“low.” If the mappings assign 10, 5 and 3 people, and 8, 4 and 6 people, respectively, to 

these three classes, we then have: 𝐹𝐹1 = 10 + 8 = 18;  𝐹𝐹2 = 5 + 4 = 12; and 𝐹𝐹3 = 3 +

6 = 9. 

11 The formulation in terms of disagreements is necessary to deal with class measured at 

levels other than nominal. 

12 With respect to the lower bound of α, see the caveat in note 7.  
 
13 The function 𝑔𝑔(. ) is, of course, defined by Equation [3]. 
 
14 This can be achieved with the help of a simple trick: (a) generate a copy of the 

reliability data, (b) switch the names of the mapping variables in this copy; (c) append the 

copy to the original reliability data; and (d) cross-tabulate the two mapping variables in 

the expanded dataset (thus producing the coincidence matrix), using any statistical 

software that is able to treat the elements in the cross-tabulation as estimates, to compute 

a cluster-corrected variance-covariance matrix (to account for the repeated observations 

in the expanded dataset), and to save that matrix for future use. 

15 The trick to generate the coincidence matrix described in the previous note can still be 

used in this context. The only restriction is that the statistical software employed needs to 

have full-fledged complex-survey commands, procedures or routines for doing cross-

tabulations. Major statistical packages like Stata, SAS, and R meet this requirement. 
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16 This Stata program, called “kanom,” was developed by the first author of this article 

and can be installed directly from within Stata, by using the following command when 

connected to the internet: “ssc install kanom.” Unlike the previously existing Stata 

program “krippalpha,” SAS and SPSS macros "kalpha" (Hayes and Krippendorff 2007), 

and R package “irr,” kanom allows taking into account the main features of complex 

survey designs (sampling weights, clusters, strata). Unlike “krippalpha” and “irr,” 

“kanom” produces confidence intervals and tests the null hypotheses that α is smaller or 

equal to 0.67, 0.75, and 0.8. Unlike the SAS and SPSS macros, which base statistical 

inference on the nonparametric bootstrap, in kanom inference is based on the delta 

method, as discussed in this article. The previously existing programs, however, allow 

computation of Krippendorff’s α with any of the four metrics introduced earlier, not just 

the nominal metric. 

17 Prior to 1988 the GSS only used the 1970 COC, while in 1991-2010 it only used the 

1980 COC. In 2012, it switched to the 2010 COC. 

18 Personal communication from Emily Beller. 

19 To this end, the GSS uses mappings from the COCs into the ISCOs developed by 

Harry Ganzeboom (see Appendix I of the GSS codebook, available at gss.norc.org/Get-

Documentation). 

20 The GT-88 mapping requires information on whether a worker is the supervisor of 

other workers. Since the GSS does not contain this information, Beller applied GT-88 

under the assumption that all respondents were non-supervisors (personal communication 

from Emily Beller). 
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21 GT-88 and GT-68 do distinguish between IVa and IVb, but in strategies F and G many 

cases belonging to IVa get coded as IVb due to the fact that these strategies assume 

supervisory status to be non-supervisor for everyone (see previous note). For this reason, 

we collapse these two categories into one. 

22 In addition to the two approaches we examine, still other approaches to measuring EGP 

classes at an intermediate granularity have been used (see, e.g., Pfeffer and Hertel 2015). 

23 Our decision to combine IVc and VIIb into one class is mostly pragmatically 

motivated. First, in contemporary advanced economies there are too few people working 

in agriculture, so they hardly show up in the available survey samples. Second, the 

mappings from occupations into EGP classes used in measurement strategies A to D —

i.e., those employed by Hout (2005) and Beller (2009) —do not distinguish between 

classes IVc and VIIb (most likely, for the reason just mentioned). 

24 Mitnik et al. (2016) reported that mean income in class IIIb is much more similar to 

that of class VII than to that of class IIIa.  

25 We do not include mother’s class in our analysis because mother’s occupation only 

became available in the GSS in 1994. 

26 The main reason for the differences in sample size across measurement strategies is 

that the strategies differ in the precedency given to employment status and some 

occupations in assigning some classes to people. Thus, if employment status (but not 

occupation) or occupation (but not employment status) are missing, class may be missing 

under one strategy but non-missing under another (in fact, it may even be missing under 

one of a strategy’s mappings and non-missing under the other, in which case it is dropped 
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from the analysis). An alternative way of proceeding is to consider “class missing” as a 

class category (whenever age and gender are not missing). With this approach, the 

sample sizes do not vary across measurement strategies and are 3,510 (both for all and for 

fathers), 1,584 (men) and 1,926 (women). We don’t report the full results using this 

approach, but see note 30 for a summary. 

27 The estimates shown in Table 5 were obtained using sampling weights, after adjusting 

the weights so that all three years (1988-1990) in the reliability sample have the same 

influence on final results. Unweighted estimates are extremely similar. If we consider the 

GSS sample for 1972-2010 (which is the sample that researchers would most likely use in 

class-based trend analyses) as the main sample, then it is clear that the reliability sample 

is not a random subsample of the main sample. The reliability sample is identical to the 

main sample for 1988-1990, while observations in the main sample in previous and later 

years had a zero probability of being selected to the reliability sample. Therefore, strictly 

speaking we are estimating reliability for 1988-1990—and interpreting the results as 

estimates of the reliability for 1972-2010 under the additional (untestable) assumption 

that reliability is the same across years.  

28 For instance, strategy D resorts to a mapping based on the 19701980 crosswalk and 

to the Beller-Hout mapping of the 1980 COC into EGP classes, but only the latter is non-

mechanical.  

29 The exact values (i.e., standard deviations below the mean) are 2.2 (all), 2.6 (men), 2.5 

(women), 1.65 (fathers) and 0.84 (fathers, expanded). 
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30 Although the values of α are all higher, the relative-reliability patterns described in this 

subsection remain essentially unchanged if we code class missing as a category (see note 

26).  

31 Cronbach’s α is widely employed to assess the internal consistency of responses in 

multi-item scales, and while 0.7 is often considered the threshold for using a scale it has 

been argued that “increasing reliabilities much beyond 0.8 in basic research is often 

wasteful of time and money” (e.g., Nunnally and Bernstein 1994:264-265). With several 

measures used to assess the reliability of psychopathology diagnoses in psychiatry 

(including Cohen’s κ), values between 0.61 and 0.8 are traditionally assumed to indicate 

“moderate” reliability, while values above 0.8 to indicate “substantial” reliability (Shrout 

1998:308). In a well-known statistical textbook, Fleiss and his coauthors wrote that, for 

most purposes, values of Cohen’s κ “larger than 0.75 or so may be taken to represent 

excellent agreement beyond chance” (Fleiss, Levin and Paik 2003:609). In content 

analysis it is customary to use 0.8 as the minimum value of α required to consider the 

data reliable, while values between 0.67 and 0.8 are deemed to characterize data that only 

should be used to draw tentative conclusions. 

32 We limit the analysis to this age group because younger people are arguably too young 

for their reported class position to offer a good representation of their long-term 

destination class.  

33 We estimate the core model of social fluidity with a six-class version of the EGP 

scheme rather than the seven-class version used in the formulation of the model (as 

mentioned earlier, the six-class version we use collapses farmers and workers in the farm 
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sector into one class). The specification of the model has been slightly adjusted to 

account for this fact. 

34 The estimates pertain to the parameters in the multiplicative specification of the model. 

The parameters in this specification are identical to the exponential of the parameters in 

the log-linear specification of the model (and are therefore always positive). 

35 Using a summary measure to define a loss function is necessary because there are 36 

differences—one per cell of the mobility table—that need to be mapped into just one 

number quantifying the loss associated to the corresponding measurement strategy.  

36 Each absolute proportional difference is computed by dividing the absolute difference 

between predicted values by the mean predicted value. For instance, if, with a given 

strategy, the predicted value for the cell of the table where father and son are both 

professional or managers is 0.2 when using the 1970 COC to assign EGP classes, while 

the predicted value using the 1980 COC is 0.3, the absolute proportional difference is: 

|0.2 − 0.3|
(0.2 + 0.3)/2

=
0.1

0.25
= 0.4, 

or, with a slight abuse of language, “40 percent.”   

37 The proportional absolute differences in estimates (across the 1970 and 1980 COCs) 

for the main effect of nonfarm self-employment are the following: 

 MS A MS F MS G 
Father 36.5 % 12.7 % 13.7 % 
Son 19.0 % 1.3 % 4.0 % 
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  Table 1: EGP class scheme, full version 
      

  I Higher-grade professionals, administrators, and officials; managers in large industrial 
establishments; large proprietors 

  II Lower-grade professionals, administrators and officials; higher-grade technicians; 
managers in small industrial establishments; supervisors of non-manual employees 

  IIIa Routine non-manual employees, higher grade (administration and commerce) 

  IIIb Routine non-manual employees, lower grade (sales and services) 

  IVa Small proprietors, artisans, etc., with employees 

  IVb Small proprietors, artisans, etc., without employees 

  IVc Farmers and smallholders; other self-employed workers in primary production 

  V Lower-grade technicians; supervisors of manual workers 

  VI Skilled manual workers 

  VIIa Semi-and unskilled manual workers (not in agriculture, etc.) 

  VIIb Agricultural and other workers in primary production 

 
  



          
  Table 2: Measurement strategies     
          
  Measurement Approach Description   
  strategy       
          

  

A Direct Hout's (2005) mappings of the 1970 and 1980 COCs into EGP classes 

  

  

B Indirect, internal Hout's (2005) mapping of the 1980 COC into EGP classes and 1970→1980 crosswalk 

  

  

C Indirect, internal Hout's (2005) mapping of the 1970 COC into EGP classes and 1980→1970 crosswalk 

  

  

D Indirect, internal Beller-Hout mapping of the 1980 COC into EGP classes and 1970→1980 crosswalk 

  

  

E Indirect, internal Morgan and Tang's (2007) mapping of the 1980 COC into EGP classes and 1970→1980 
crosswalk 

  

  

F Indirect, external GSS's 1980 COC→ISCO-88 and 1970 COC→ISCO-68 recodes, plus GT-88 and GT-68 
mappings into EGP classes 

  

  

G Indirect, external GSS's 1980 COC→ISCO-68 and 1970 COC→ISCO-68 recodes, plus GT-68 mapping into 
EGP classes 

  
 
  



            
  Table 3: EGP classes at different granularities     
            

    Measurement strategy   

  Granularity A, B, C and D E F and G   
            

  

Highest available  I excp. managers 
II excp. managers 
Managers 
IIIa 
IIIb 
IVa + IVb  
V + VI 
VIIa 
IVc + VIIb 

I 
II 
IIIa 
IIIb 
IVa + IVb 
IVc 
V 
VI 
VIIa 
VIIb 

I 
II 
IIIa + IIIb 
IVa + IVb 
IVc 
V 
VI 
VIIa 
VIIb 

  

  

 
Intermediate 

(stressing manual / 
nonmanual divide) 

 
I + II 
IIIa + IIIb 
IVa + IVb  
V + VI 
VIIa 
IVc + VIIb 

 
I + II 
IIIa + IIIb 
IVa + IVb  
V + VI 
VIIa 
IVc + VIIb 

 
I + II 
IIIa + IIIb 
IVa + IVb  
V + VI 
VIIa 
IVc + VIIb 

  

  

 
Intermediate 

 (stressing similarity 
 in income) 

 
I + II 
IIIa 
IVa + IVb  
V + VI 
VIIa + IIIb 
IVc + VIIb 

 
I + II 
IIIa 
IVa + IVb  
V + VI 
VIIa + IIIb 
IVc + VIIb 

    

  

 
Low 

(Professional/Managers 
versus all other classes) 

 
I + II 
All other classes 

 
I + II 
All other classes 

 
I + II 
All other classes 

  
 
 
 
 
 
 
 
 
 



Table 4: Number of observations with non-missing class values 
            

Measurement  Population 
strategy All Men Women Fathers Fathers (exp.) 

A 3,314 1,530 1,784 2,904 3,389 
B 3,293 1,510 1,783 2,858 3,343 
C 3,316 1,532 1,784 2,909 3,394 
D 3,289 1,506 1,783 2,856 3,341 
E 3,282 1,502 1,780 2,838 3,323 
F 3,302 1,514 1,788 2,881 3,366 
G 3,329 1,539 1,790 2,931 3,416 

 
 
  



Table 5: Estimates of Krippendorff's α 
          

Measurement  Measurement  Population 
strategy granularity All Men Women Fathers Fathers (exp.) 

A High 0.75 (0.73-0.77) 0.73 (0.70-0.75) 0.76 (0.73-0.78) 0.73 (0.71-0.75) 0.77 (0.76-0.79) 
  Intermediate (manual/nonm.) 0.77 (0.75-0.79) 0.75 (0.72-0.78) 0.78 (0.75-0.80) 0.74 (0.72-0.76) 0.78 (0.77-0.80) 
  Intermediate (income) 0.76 (0.74-0.78) 0.74 (0.71-0.77) 0.77 (0.74-0.80) 0.74 (0.72-0.76) 0.78 (0.77-0.80) 
  Low 0.77 (0.75-0.80) 0.77 (0.73-0.80) 0.77 (0.74-0.81) 0.76 (0.73-0.79) 0.84 (0.82-0.86) 
B High 0.78 (0.77-0.80) 0.78 (0.76-0.80) 0.78 (0.75-0.80) 0.78 (0.77-0.80) 0.82 (0.80-0.83) 
  Intermediate (manual/nonm.) 0.81 (0.79-0.83) 0.81 (0.78-0.83) 0.80 (0.77-0.82) 0.79 (0.77-0.81) 0.83 (0.81-0.84) 
  Intermediate (income) 0.80 (0.78-0.81) 0.80 (0.77-0.82) 0.79 (0.76-0.81) 0.79 (0.77-0.81) 0.83 (0.81-0.84) 
  Low 0.79 (0.77-0.81) 0.78 (0.75-0.82) 0.80 (0.77-0.83) 0.76 (0.73-0.78) 0.84 (0.82-0.86) 
C High 0.77 (0.75-0.78) 0.75 (0.73-0.78) 0.77 (0.74-0.79) 0.79 (0.77-0.81) 0.83 (0.81-0.84) 
  Intermediate (manual/nonm.) 0.81 (0.79-0.82) 0.79 (0.76-0.82) 0.81 (0.78-0.83) 0.81 (0.79-0.83) 0.84 (0.83-0.86) 
  Intermediate (income) 0.77 (0.75-0.79) 0.77 (0.74-0.79) 0.77 (0.74-0.80) 0.80 (0.78-0.82) 0.84 (0.82-0.85) 
  Low 0.79 (0.76-0.81) 0.78 (0.74-0.81) 0.79 (0.76-0.82) 0.79 (0.77-0.82) 0.86 (0.84-0.88) 
D High 0.79 (0.78-0.81) 0.80 (0.78-0.82) 0.78 (0.76-0.81) 0.83 (0.82-0.85) 0.86 (0.84-0.87) 
  Intermediate (manual/nonm.) 0.82 (0.80-0.84) 0.83 (0.80-0.85) 0.80 (0.77-0.82) 0.84 (0.82-0.86) 0.87 (0.85-0.88) 
  Intermediate (income) 0.81 (0.79-0.82) 0.82 (0.79-0.84) 0.79 (0.76-0.81) 0.84 (0.82-0.86) 0.87 (0.85-0.88) 
  Low 0.81 (0.79-0.83) 0.82 (0.78-0.85) 0.80 (0.77-0.84) 0.85 (0.82-0.87) 0.90 (0.89-0.92) 
E High 0.72 (0.70-0.74) 0.70 (0.67-0.73) 0.73 (0.70-0.75) 0.75 (0.73-0.77) 0.79 (0.77-0.81) 
  Intermediate (manual/nonm.) 0.80 (0.78-0.81) 0.78 (0.76-0.81) 0.80 (0.77-0.82) 0.81 (0.80-0.83) 0.85 (0.83-0.86) 
  Intermediate (income) 0.76 (0.74-0.77) 0.75 (0.72-0.77) 0.75 (0.73-0.78) 0.80 (0.78-0.82) 0.83 (0.82-0.85) 
  Low 0.77 (0.74-0.79) 0.75 (0.71-0.79) 0.78 (0.75-0.82) 0.79 (0.77-0.82) 0.86 (0.85-0.88) 
F High 0.58 (0.56-0.60) 0.58 (0.55-0.61) 0.56 (0.53-0.59) 0.62 (0.60-0.64) 0.68 (0.66-0.70) 
  Intermediate (manual/nonm.) 0.66 (0.64-0.68) 0.67 (0.64-0.70) 0.63 (0.59-0.66) 0.72 (0.70-0.74) 0.77 (0.76-0.79) 
  Low 0.72 (0.70-0.75) 0.72 (0.68-0.76) 0.72 (0.69-0.76) 0.72 (0.69-0.75) 0.81 (0.79-0.83) 
G High 0.69 (0.67-0.71) 0.67 (0.64-0.70) 0.69 (0.66-0.72) 0.71 (0.69-0.73) 0.76 (0.74-0.77) 
  Intermediate (manual/nonm.) 0.71 (0.69-0.73) 0.69 (0.66-0.72) 0.70 (0.67-0.73) 0.73 (0.71-0.75) 0.78 (0.76-0.80) 
  Low 0.75 (0.73-0.78) 0.75 (0.71-0.79) 0.76 (0.72-0.79) 0.76 (0.73-0.78) 0.84 (0.82-0.86) 

Note: Point estimates in bold, 95 % confidence intervals in parentheses 



Table 6: Linear regression of Krippendorff’s α on number of non-mechanical 
               mappings, granularity, gender and generation 
 
  Krippendorff’s α 
Number of non-mechanical mappings   
   Two -0.04** 
   Three -0.07** 
   Four -0.12** 
Granularity   
   Intermediate (manual/nonmanual)  0.04** 
   Intermediate (income based)  0.03** 
   Low  0.05** 
Gender    
   All (men and women)  0.01 
   Women  0.00 
Generation   
   Father  0.02*    
   Father (expanded)  0.07**  
Constant  0.75** 
Observations 130 
Adjusted R2 0.78 
    
Notes:   
1. * p < 0.05, ** p < 0.001.   
2. Omitted categories are One mapping (Number of non-mechanical 
    mappings), High (Granularity), Men (Gender) and Subject (Generation). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 7:  Hypothesis tests for Krippendorff's α ≤ 0.75      
              

Measurement  Measurement Population 
strategy granularity All Men Women Fathers Fathers (exp.) 

A High         ** 
  Intermediate (M/NM) *   *   *** 
  Intermediate (Inc.)         *** 
  Low *       *** 
B High *** ** ** *** *** 
  Intermediate (M/NM) *** *** *** *** *** 
  Intermediate (Inc.) *** *** ** *** *** 
  Low *** * **   *** 
C High *     *** *** 
  Intermediate (M/NM) *** ** *** *** *** 
  Intermediate (Inc.) **     *** *** 
  Low **   ** *** *** 
D High *** *** ** *** *** 
  Intermediate (M/NM) *** *** *** *** *** 
  Intermediate (Inc.) *** *** ** *** *** 
  Low *** *** *** *** *** 
E High         *** 
  Intermediate (M/NM) *** ** *** *** *** 
  Intermediate (Inc.)       *** *** 
  Low     * *** *** 
F High           
  Intermediate (M/NM)         ** 
  Low         *** 
G High           
  Intermediate (M/NM)         *** 
  Low         *** 

              
Note:             
* p < 0.05,  ** p < 0.01, ***  p < 0.001         

 
 
 
 
 
 
 
 
 



 
Table 8: Estimates of Krippendorff's α, core-model class variables (men ages 31-64) 
            
Measurement  Number of 

observations 
Men's  Men's Fathers 

Strategy α p-value α p-value 
A 935 0.72 (0.68-0.76) 0.934 0.72 (0.68-0.75) 0.961 
B 913 0.79 (0.76-0.82) 0.011 0.79 (0.76-0.82) 0.007 
C 940 0.76 (0.73-0.80) 0.221 0.79 (0.76-0.82) 0.007 
D 909 0.81 (0.78-0.84) 0.000 0.82 (0.79-0.85) 0.000 
E 904 0.76 (0.72-0.80) 0.308 0.81 (0.78-0.84) 0.000 
F 924 0.67 (0.63-0.71) 1.000 0.72 (0.69-0.76) 0.949 
G 951 0.68 (0.64-0.72) 1.000 0.73 (0.70-0.76) 0.869 

            
Notes:            
1.  Class measured at the intermediate (manual/nonmanual) granularity in all cases. 
2. Point estimates in bold, 95 % confidence intervals in parentheses.   
3. The p-values in columns 4 and 6 are for H0: α ≤ 0.75.     

 
 



          

    Figure 1: Cross-tabulation of nominal class measures produced   
                       by a measurement strategy's mappings    
                   
         Mapping 2        

     C1 C2 . . . CK       

   C1 p11 p12 . . . p1K p1.     

 Mapping 1 C2 p21 p22 . . . p2K p2.     
   . . .   . .     
   . . .   . .     
   . . .   . .     
   CK pK1 pK2 . . . pKK pK.     

     p.1 p.2 . . . p.K 1     
                   

                           C1, C2, . . ., CK are class categories     
                   

                   
 
  



  Figure 2: Example of reliability sample (standard and coincidence-matrix representations) 
                        
           People-by-variables dataset       Coincidence matrix     

  ID Mapping 1  Mapping 2             
  1 MW MW     MW NMW PM       
  2 MW  NMW   MW 2 1 0 3     
  3 NMW NMW   NMW 1 2 1 4     
  4 NMW PM   PM 0 1 4 5     
  5 PM PM     3 4 5 12     
  6 PM PM                 
                        
  MW: Manual worker; NMW: Non-manual worker; PM: Professional or Manager.     
                        

 
 
  



 
 
  

Figure 3:  General coincidence matrix

1 . k . .
1 O11 . O1k . . t1
. . . .
. . .
r Or1 . Ork . .
. . . .

t1 . tk .

     𝑡𝑟 = ∑ 𝑂𝑟𝑘𝑘

     𝑡 = ∑ ∑ 𝑂𝑟𝑘𝑘𝑟
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